麦克劳林公式和佩亚诺余项泰勒公式

如题所述

麦克劳林公式是泰勒公式的一种特殊形式。

指数函数的麦克劳林公式:

$$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots=\sum_{n=0}^{\infty}\frac{x^n}{n!}$$

这个公式将指数函数在$x=0$处展开成无限项的幂级数形式。

佩亚诺型余项的泰勒公式:

f(x)=f(x0)+(x-x0)*f'(x0)/1!+(x-x0)^2*f''(x0)/2!+…+(x-x0)^n*f^(n)(x0)/n!+o((x-x0)^n)

而x0→0时,f(x)=f(0)+x*f'(0)/1!+x^2*f''(0)/2!+…+x^n*f^(n)(0)/n!+o(x^n)

泰勒公式的余项

泰勒公式的余项有两类:一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)。

泰勒公式的几何意义

泰勒公式的几何意义是利用多项式函数来逼近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性。

泰勒公式在高等数学中的应用

在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:

(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。

(2)应用泰勒公式可以证明区间上的函数等式或不等式。

(3)应用泰勒公式可以进行更加精密的近似计算。

(4)应用泰勒公式可以求解一些极限。

(5)应用泰勒公式可以计算高阶导数的数值。

温馨提示:答案为网友推荐,仅供参考
相似回答