问题是 已知函数f(x)=x^3+ax2+x+1,a∈R (1)讨论函数f(x)的单调区间

问题是 已知函数f(x)=x^3+ax²+x+1,a∈R
(1)讨论函数f(x)的单调区间
(2)设函数f(x)在区间(-2/3,-1/3)内是减函数,求a的取值范围

1)求函数的导数f'(x)=3x^2+2ax+1.


如图,位于两根之间,f'(x)<0,所以f(x)在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上是单调递减函数,而在两根之外,f'(x)>0,即在( -无穷,[-a-sqrt(a^2-3)]/3 )并( [-a+sqrt(a^2-3)]/3 ,+无穷)上是单调递增函数。

2)如图

区间必须落在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上,即[-a-sqrt(a^2-3)]/3≤-2/3且[-a+sqrt(a^2-3)]/3≥-1/3,解不等式有a≥2

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2016-12-01
f(x)=x^3+ax^2+x+1,
f'(x)=3x^2+2ax+1,
(1)讨论f(x)的单调区间:
令f'(x)=0,即3x^2+2ax+1=0,
其中△=4(a^2-3),
①当|a|≤√3时,在(-∞,+∞)上,所以f'(x)≥0,f(x)在(-∞,+∞)上单调增加;
②当|a|>√3时,
在(-∞,
-[a+√(a^2-3)]/3]及(-[a-√(a^2-3)]/3,+∞)上f'(x)≥0,f(x)单调增加;
在(-[a+√(a^2-3)]/3,-[a-√(a^2-3)]/3]上f'(x)≤0,f(x)单调减少。
(2)f(x)在区间(-2/3,-1/3)内是减函数,说明
(-2/3,-1/3)是(-[a+√(a^2-3)]/3,-[a-√(a^2-3)]/3)的子集,
必须同时有①-[a+√(a^2-3)]/3≤-2/3,②-[a-√(a^2-3)]/3≥-1/3,
即①√(a^2-3)≥2-a,②√(a^2-3)≥a-1,
解不等式得a≥2。
.
【解法二】根据三次项系数大于0的特点,f(x)在区间(-2/3,-1/3)内是减函数的充要条件是:f'(-2/3)≤0,且f'(-1/3)≤0,同样可以得到
a≥2。追问

你是怎么想到去讨论|a|≤√3和 |a|>√3的啊?-[a+√(a^2-3)]/3]怎么算出来的的啊。。超难的。

追答

△=4(a^2-3)=0=〉lal=√3 为驻点(极值点)

参考资料:http://iask.sina.com.cn/b/16746270.html

本回答被提问者采纳
相似回答