蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上.由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点.
出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法.至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA.1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开.
这里介绍一种较为简便的初等数学证法.
证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM.SM.MT.
∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC,
∴DS/BT=DM/BM又∵∠D=∠B
∴△MSD∽△MTB,∠MSD=∠MTB
∴∠MSX=∠MTY;又∵O,S,X,M与O,T.Y.M均是四点共圆,
∴∠XOM=∠YOM
∵OM⊥PQ∴XM=YM
如图1,椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0).
(Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;
(Ⅱ)直线y=kx交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0).
求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)
(Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q.
求证: | OP | = | OQ |.
(证明过程不考虑CH或GD垂直于X轴的情形)
温馨提示:答案为网友推荐,仅供参考