国土资源大调查以来地质环境调查进展

如题所述

1998年,我国地质勘查管理体制重大改革,绝大多数地勘队伍实行属地化管理。为统一部署和组织实施国家基础性、公益性、战略性地质与矿产勘查工作,国土资源部于1999年组建中国地质调查局,同时启动国土资源大调查专项。调查国土资源状况与评价地质环境是国土资源大调查专项的核心内容。表6-2列出了历年地质环境调查经费投入情况。

表6-2 国土资源大调查专项1999~2009年地质环境调查经费投入统计表

(一)水文地质调查

1.新一轮全国地下水资源评价

2000~2002年,在以省(区、市)为单元的调查评价工作基础上,完成了全国新一轮地下水资源调查评价,查明了自1984年以来全国地下水资源数量与质量的时空变化、开采潜力等总体状况,为国家水资源的规划和管理提供了科学依据。

评价结果表明,我国地下水天然资源量多年平均为9235亿m3,其中地下淡水天然资源为8837亿m3,地下微咸水天然资源为277亿m3,地下半咸水天然资源为121亿m3;全国地下淡水可开采资源多年平均为3527亿m3。在全国地下水资源中,按面积统计,有63%的地下水资源可供直接饮用,12%为不宜饮用但可作为工农业供水水源,约8%的地下水资源不能直接利用,需经专门处理后才能利用。南方地区地下水质量优良,大多地下水可供直接饮用。北方山区及山前平原地区水质较好,中部平原区较差,滨海地区水质最差。各省(区、市)不同程度地存在着与饮用水水质有关的地方病区,特别是北方丘陵山区部分区域分布着高氟水、高砷水、低碘水和高铁锰水等。

2.北方主要平原和盆地水文地质调查

以我国北方主要平原和盆地为重点,开展了地下水资源及其环境问题调查评价工作。主要包括西北的塔里木盆地、柴达木盆地、准噶尔盆地、河西走廊、银川平原、鄂尔多斯盆地,东北的三江平原、松嫩平原、西辽河平原,华北的华北平原、山西六大盆地。主要通过1∶25万水文地质调查进一步摸清主要平原和盆地区域地下水系统的空间分布和结构,查明地下水的补、径、排条件及其变化过程,采用均衡法、数值模拟法等分区评价地下水资源,为地区经济和社会发展规划提供了基础数据。在松嫩平原、华北平原、鄂尔多斯盆地、银川平原、河西走廊、准噶尔盆地6个平原和盆地开展了地下水动态调查评价,全面掌握地下水位、水量、水质动态变化特征,为实施含水层科学管理与地下水合理开发利用提供决策依据。

(1)鄂尔多斯盆地。建立了全盆地三维地质结构模型,初步查明了白垩系含水介质的空间分布规律,初步查明了白垩系岩相古地理特征及与地下水赋存条件的关系;同位素技术在鄂尔多斯地下水勘查中应用,取得了重要进展;在白垩系自流水盆地白于山以北的典型地段建立了潜水入渗与蒸发原位试验场,取得了关键性数据;提出了地下水资源合理利用与对策。查明了全盆地区域地下水资源总量、开采利用现状和开发潜力(表6-3)。在地下水资源相对富集的18个地区,具备建立地下水集中供水水源地的地段达161个,占全盆地地下水可开采资源总量的38%。

表6-3 鄂尔多斯盆地地下水资源与开采潜力表

资料来源:据西安地质调查中心

(2)华北平原。通过对钻孔资料的研究分析,将华北平原第四纪下界统一到世界较为认可的2.58Ma;以沉积物的岩性为基础,将第四系含水岩系自上而下划分为3个含水层组,初步建立了华北地下水三维地质模型。采用地下水位监测资料和同位素数据,表明浅层水接受当地降水和灌溉入渗补给,中部平原深层地下水是末次冰期补给,天津一带滨海平原地下水推测为末次冰期间冰阶补给。基本查明了区域地下水降落漏斗发展变化特征,在华北平原浅层地下水位下降的同时,开采地下水集中的城市地区出现了规模不等的地下水位降落漏斗,较为严重的漏斗有石家庄漏斗和宁柏隆漏斗;深层地下水头的大幅度下降,致使华北平原大部分深层地下水头低于海平面,较为严重的漏斗有冀枣衡漏斗、沧州漏斗和德州漏斗。基本查明了华北平原地下水质变化特征,总趋势从氯化物型地下水向硫酸盐型地下水,以至向重碳酸型地下水演化。根据华北平原的地下水资源量(表6-4),提出了华北平原水资源可持续利用战略,进行了华北平原地下水功能区划。

(3)柴达木盆地。完成1∶25万水文地质环境地质调查6.5万Km2,1∶25万遥感解译12万Km2,水文地质钻探1615.46m。根据700多个钻孔资料,初步建立了柴达木盆地地质结构模型;初步查明了区内地下水资源的补给及其开发现状,基本摸清了与地下水有关的环境问题;根据地下水的生态和环境功能,将全区地下水划分为山前戈壁带地下水补给-径流功能区、沙砾石带地下水开发利用功能区、冲湖积平原细土带地下水排泄功能区和盆地中心地下-地表咸卤水盐类矿产资源功能区。

(4)河西走廊。完成1∶25万水文地质补充调查3.83万Km2,遥感解译面积4.5万Km2;水文地质勘探孔5眼,总进尺1096.39m。系统地整理了河西走廊近50年来的水文地质勘查资料,对第四纪地质、地下水补径排条件、地下水动态规律及水质、水量特征进行了系统地归纳与分析;评价了现状地下水天然资源量、现状地下水开采总量,确定了走廊平原区地下水允许开采量;建立了疏勒河流域水文地质模型。

表6-4 北方主要平原(盆地)地下水开采程度表

注:①为孔隙水开采量;②包括微咸水。

资料来源:据中国地质科学院水文地质环境地质研究所

3.西南岩溶石山地区水文地质环境地质调查

西南岩溶石山地区包括云南、贵州、广西、湖南、四川、重庆、湖北、广东8个省(区、市),岩溶面积78万Km2。工作重点为以岩溶流域为单元,进行1∶5万水文地质和环境地质综合调查,掌握岩溶干旱、洪涝和石漠化状况,提出流域内岩溶水开发工程方案,选择典型岩溶水源地进行地下水开发和生态环境综合治理示范,为解决南方岩溶区干旱缺水、推进石漠化综合治理提供基础地质资料和对策。完成了1∶25万水文地质调查8.91万Km2,1∶5万水文地质环境地质综合调查12.32万Km2,水文地质钻探25.5万m。

通过调查,查明了西南岩溶区水资源量及其开发利用潜力,地下水天然资源量1762.82亿m3/a,岩溶水允许开采量615.70亿m3/a,地下水资源潜力517.38亿m3/a。区内有2863条地下河,已开发利用的地下河138条,占4.82%,地下河的开发利用潜力很大。查清了岩溶石漠化的分布状况及其发展趋势,石漠化面积11.35万Km2,占岩溶区面积的22.7%,年平均增长率为1.86%,岩溶石漠化呈不断恶化的趋势。选择不同类型岩溶区,以流域为单元,开展了1∶5万水文地质和环境地质调查,掌握了岩溶干旱、洪涝、地质灾害状况,制定了流域内岩溶水开发工程方案和地质环境综合整治区划。针对不同类型区开发条件,因地制宜,采取堵洞蓄水、暗河截流、大泉壅水、钻井、大口井、斜井等多种方式,开展了岩溶地下水开发利用与生态环境综合治理示范,取得了明显的社会效益与经济效益。

4.严重缺水地区和地方病严重区地下水勘查

我国西南红层地区、黄土高原、西北内陆盆地及山地高原分布着一些严重缺水或季节性缺水地区,还有一些与劣质地下水相关的饮水型地方病区。工作重点为在不同类型缺水区和地方病区选择典型地区开展人畜饮用地下水勘查示范,查清地下水分布规律,因地制宜地建立地下水开发利用示范工程,总结地下水富集模式和勘查开发模式,为类似地区地下水勘查与开发利用提供技术支撑。主要包括西北河西走廊、塔里木等内陆盆地,黄土高原、内蒙古高原、河北太行山区、辽宁西部山区、川渝滇红层地区,松嫩平原、河套平原、大同盆地、银川平原等高砷、高氟地下水区以及四川大骨节病区。1999~2009年完成1∶5万水文地质调查25.82万Km2,1∶5万遥感21.58万Km2,水文地质钻探11.9万m。

通过地下水勘查,从宏观上掌握了严重缺水地区和劣质水区(高砷、高氟地下水)的分布和现状,按照黄土高原区、内陆盆地山前平原区、山地高原区、红层盆地区和劣质水区5种缺水类型,选择典型地区开展了地下水勘查示范,探索出“划分类型,典型示范;总结经验,编制区划;辐射带动,逐步解决”的工作模式和“调查—示范—区划”的工作方法。在基岩山区,发现并总结出叠瓦状台阶型、棋盘型和隐伏风化壳型等基岩裂隙水富集模式;在内陆干旱盆地等地下咸水、淡水交错分布区,总结出“河流冲淡型”、“古河道型”等淡水体形成与埋藏模式。在西南红层丘陵区,提出了“红层风化壳弱含水层裂隙水资源化”的新认识,开发出“小口径浅井”开采新技术,研制出与之配套的“微型钻机”与成井技术,创造性地建立了“一户一井”“分散供水”新模式。在高砷、高氟地下水分布区,总结出新生代断陷盆地型、第四纪冲洪积平原型、新生代滨海平原型和基岩构造型高砷地下水地质环境类型。

5.东部重要经济区地下水污染状况调查

2002年完成的“新一轮全国地下水资源评价”项目中表明,全国地下水污染形势不容乐观,有2/3城市地下水水质普遍下降,300多个城市由于地下水污染造成供水紧张[13]。为了摸清全国地下水污染状况,评价各区域地下水污染程度和变化趋势,中国地质调查局于2006年启动了全国地下水污染调查,第一阶段主要部署在东部重要经济区,包括珠江三角洲、长江三角洲、淮河流域平原区、华北平原和东北平原,计划于2010年完成。

(1)珠江三角洲。调查发现区域地下水酸化严重,已成为最大的区域地下水环境问题;三氮污染突出,局部已呈片状分布特征;重金属超标点多,特别在城市周边及工矿企业分布区,铅、砷超标率高;微量有机污染虽超标点不多,但检出点多。调查发现典型点污染严重,有机无机污染并存,且呈现多种微量有机污染物检出和超标的复合污染特征。

(2)长江三角洲。基本查明长江三角洲地区污染源类型和地下水污染现状。进行了长江三角洲(长江以南)地区地下水防污性能分区与评价,区内地下水防污性能总体较好,防污性能较差和极差区主要分布在张家港-常熟-太仓盐铁塘以北沿江地区、杭州西南、余杭西北的岩溶山区及海盐的钱塘江口;地下水无机污染以“三氮”为主,NO3-超标率居首;初步掌握了“癌症村”周边污染源的分布和水土环境中存在的主要污染物;成功地应用地质雷达对苏南地区加油站泄漏和污染状况进行探查。

(3)华北平原。根据地下水污染调查结果统计,区域地下水污染呈加重态势:污染指标以三氮(NO3-﹑NO2-﹑NH4+)、(类)重金属(Pb﹑As﹑Cd﹑Cr6+﹑Hg)和痕量有机污染物为主;多为点状污染,分布较广,多集中在城市周边和重化工开发区及影响带范围内;以浅层地下水污染为主,深层地下水亦有多点检出污染物;往往有机污染和无机污染并存,呈多种指标的复合污染特征,地下水环境整体状况堪忧。

(二)环境地质调查

1.全国矿山地质环境调查与评估

完成了全国以省(区、市)为单元的矿山地质环境调查与评估,首次系统地对我国所有矿山地质环境问题进行了摸底调查,共调查矿山113149个,调查矿山面积581.9万hm2,基本摸清了我国矿山环境的现状,查明了我国主要的矿山环境问题及其危害[14]。系统地总结了我国不同的区域环境地质背景和不同的矿类开发所引发的环境地质问题的类型、特征及其危害,分析了我国矿山环境地质问题产生的主导因素,建立了全国矿山地质环境综合评估指标体系,为政府部门今后实施矿山地质环境管理提供重要基础数据。选择冀东唐山地区煤炭资源开采区、湖南省和胶东半岛矿山分布密集区等典型地区,通过矿山地质环境实地调查和遥感调查,进行了矿山地质环境动态调查,提出了矿山地质环境动态评估的总体思路、技术方法及评估指标。

2.全国主要城市环境地质调查评价

我国处在城市化进程的加速阶段,为了摸清城市化进程中存在的主要环境地质问题,开展了31个省(区、市)地区级及以上300多个城市的环境地质调查评价。工作重点以搜集资料、加强资料的二次开发和综合研究为主,在城市重点区域开展1∶5万环境地质简测,查明主要城市地质环境背景和环境地质问题的类型、分布、成因和危害程度。2005~2009年,完成了江西、浙江、四川、云南、黑龙江、甘肃、海南、河南、湖南、吉林、贵州、福建、山西、广西、安徽15个省(区、市)的196个地级以上城市环境地质调查评价,2010年将完成其余省(区、市)主要城市环境地质调查评价。

为了向城市建设和经济社会可持续发展提供全面、详细的地质环境数据,中国地质调查局于2003年选择北京、上海、天津、广州、杭州、南京6个城市先后开展了三维城市地质调查试点工作,通过城市地下三维地质结构、工程地质调查、地质灾害调查等,集成历史地质数据,建立城市三维可视化地学信息管理和服务系统。目前,6个试点的工作已基本完成,所取得的成果在应急水源勘查、垃圾填埋场选址、新城规划、城市地铁施工、特色农业区划、地热和浅层地温能开发利用等领域发挥了重要作用。

3.重要经济区地质环境调查评价

重要经济区是我国经济发展的引擎,人口密集,工程建设集中。为了支持重要经济区的发展,自2000年开始先后启动了东南沿海及重要经济区、环渤海湾地区、长江三角洲地区、珠江三角洲地区、海峡西岸经济区、北部湾经济区、长江中游城市群等重要经济区地质环境调查评价,计划于2010年完成。通过1∶25万环境地质调查和重点区1∶5万环境地质调查,了解重要经济区区域地壳稳定性、海岸侵蚀和淤积、地面沉降等地质灾害状况、重点港口和城市主要环境地质问题等,为制定该地区社会经济和城市发展规划提供地质依据。

(1)东南沿海及重要经济区。基本查明了包括珠江三角洲地区、福建沿海平原、海南岛、广西北部湾地区、苏锡常地区等在内的东南沿海地区海岸带地质环境特点、海岸变迁规律,发现东南沿海地区在第四纪时期曾发生8次大规模海岸变迁,海岸侵蚀和淤积具有普遍性、时空的差异性、形式的多样性、类型的多变性及侵蚀趋势加剧等特点。了解了东南沿海地区海水入侵分布范围、成因和动态变化,东南沿海地区海水入侵面积达168Km2。摸清了地下水污染物、土壤重金属和有机农药污染现状、污染特点和成因。通过地面沉降和地裂缝调查,表明珠江三角洲软土分布面积为7969Km2,地面沉降超过200mm的面积已达到2万Km2以上。评价了东南沿海地区地下水资源潜力,圈定了24处后备水源地。

(2)环渤海湾地区。建立了大连大魏家、秦皇岛枣园、山东莱州湾3条海水入侵监测剖面,在渤海湾淤泥质、泥砂质海岸带建立了25条地质环境监测剖面,建立了大连—秦皇岛海岸带和德州—烟台海岸带地面变形GPS观测墩,形成了环渤海海岸带地质环境监测体系。开展了天津滨海新应急水源勘查,调查评价地下水应急3处,探讨了天津滨海新区地下水开发的新模式。开展了天津滨海新区、曹妃甸新区等重点地区海岸带环境地质综合调查评价,主动为政府提供服务,为重大工程规划建设区提供地下水资源和地质环境安全保障。

4.大江大河流域和生态环境脆弱区环境地质调查

围绕大江大河治理开发规划和生态环境脆弱区发展规划,开展了大江大河流域和生态环境脆弱区环境地质调查,为水患防治、工程建设、治理开发、生态环境保护提供了地质依据。主要包括黄河中游、长江源区和长江上游、长江中游、怒江流域、内蒙古东部荒漠化地区等。

(1)长江中游主要水患区。环境地质调查查明了水患区的地质环境背景条件,深入研究了与水患形成有关的主要环境地质问题,反映了工作区第四纪地质、地貌、新构造运动与构造沉降速率、江湖泥沙淤积、堤基稳定性、环境地质分区等特征。论证评价了人类工程活动对水患形成的利弊影响,从地学角度提出了防洪治水的构想和若干对策建议。

(2)北方荒漠化。系统收集、整理和综合分析了工作区有关荒漠化的各类资料,对中国北方荒漠化研究历史、研究现状以及存在的主要问题作了全面论述。对中国北方荒漠化的类型、分布范围、等级划分及危害程度进行了详细论述,对不同类型荒漠化形成的地质背景及其人为影响等因素做了初步分析。初步查明荒漠化分布地区地下水资源分布状况,提出了中国北方荒漠化防治对策。

5.国家重大工程区域地壳稳定性调查与评价

近年来,国家规划兴建了一系列重大建设工程,包括青藏铁路、滇藏铁路等工程。这些工程分布于不同的地质构造单元,不同程度地受各种地质灾害、活动断裂和地震活动的影响和威胁。围绕着重大工程安全,以青藏高原及其周边地区的重大工程区域地壳稳定性为重点,在第四纪地质和活动断裂调查、地壳稳定性评价、地质灾害和重大工程地质问题研究等方面开展了一系列专项调查,涉及的重大工程主要包括:青藏铁路工程、滇藏铁路工程、西气东输工程、南水北调西线工程、三峡引水工程等,为这些工程的规划、选线、设计、施工和运营管理提供了重要的工程地质环境资料和科学依据。

(三)地质灾害调查

1.全国山区丘陵县(市)地质灾害调查与区划

我国山区丘陵区地质环境脆弱,易于发生突发性地质灾害。1999~2008年开展完成了1640个山区丘陵县地质灾害调查与区划,调查面积650万Km2。调查工作以县(市)为单元开展,通过1∶10万地质灾害调查,在各调查县(市)圈定地质灾害易发区,建立地质灾害群测群防网络,编制重大地质灾害防灾预案,建立县级地质灾害信息系统,编制县级地质灾害防治规划。共调查并确定地质灾害及地质灾害隐患点10多万处,针对查出的重要隐患点,建立了县、乡、村三级责任制的群测群防监测预警体系,对重要地质灾害隐患点编制了防灾预案,提出了县(市)地质灾害防治对策及建议。基本查明了全国山区丘陵区地质灾害的主要类型和分布规律、划分了地质灾害易发区,为地方政府在社会发展和经济建设过程中合理利用土地、主动防范地质灾害提供了重要依据。

2.重点地区地质灾害详细调查

在全国地质灾害易发区内,选择黄土高原区、秦巴山区、川滇山地区、湘鄂桂山地区、新疆伊犁谷地地质灾害高发区开展1∶5万为主的地质灾害详细调查。以县(市)级行政区划为基本单元,通过遥感解译、地面调查与测绘,查明地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息系统,建立健全群专结合的监测网络。到2010年底将完成127个县(市)调查任务,覆盖面积39.4万Km2

3.突发性地质灾害监测预警示范

为推进全国地质灾害监测预警工作,选取了不同突发性地质灾害类型开展监测预警示范,对重大地质灾害隐患点长期跟踪其动态变化,地质灾害预警能力明显提升。主要包括:兰州市地质灾害监测预警示范、延安宝塔区地质灾害监测预警示范、雅安地区地质灾害监测预警示范、华蓥山地区地质灾害监测预警示范、北京地区滑坡泥石流灾害监测预警示范、闽东南地区台风暴雨型地质灾害监测预警示范、哀牢山地区地质灾害监测预警示范、江西重点地质灾害易发区监测预警示范等。

4.重点地区地面沉降调查与监测

长三角、华北平原和汾渭盆地地面沉降调查与监测工作取得重要进展,监测水平不断提升,为区域地面沉降防治提供了基础依据。长三角地面沉降调查与监测,初步建成了覆盖长江三角洲(长江以南)地区、集各种监测技术于一体、优势互补的地面沉降监测网,基本实现了对地面沉降点、面和动态变化的立体监控;初步查明了长江三角洲(长江以南)地区地面沉降的空间分布及变化特征;评估了地面沉降、地裂缝造成的经济损失;建立了长江三角洲(长江以南)地区孔隙承压水三维地下水流模型,以地面沉降为约束因素,确定了不同地质结构区地下水的临界水位;基本查明了长江三角洲区域地面沉降的成因,松散沉积层地质结构是区域地面沉降重要的内在因素,地下水开采是地面沉降的主要影响因素,大规模城市建设是上海中心城区地面沉降的重要影响因素;首次建立了上海、江苏苏锡常地区地下水流与地面沉降的耦合模型,真实刻画了地面沉降过程中各地质参数的变化,提高了地面沉降的预警预报水平,也使我国地面沉降的研究居于国际领先地位。区域地面沉降风险管理区划研究为政府实施区域地面沉降防控管理以及减灾防灾提供了有效的技术支撑。

温馨提示:答案为网友推荐,仅供参考
相似回答