什么是勾股数?

什么是勾股数?
请给我解释一下,谢谢!

勾股定理实际上是一个不定问题,因为它有无数组解。满足勾股定理 的有理数组( a , b , c ) 称为勾股数组,西方称为毕达哥拉斯数组。如何用公式表示出全部勾股数组,是二千多年来数学家们关注的问题。

从公元前五、六世纪的毕达哥拉斯开始,柏拉图、欧几里得等都做过努力,可是,他们的运算式并不能表示出全部勾股数组,因此不是通解公式。世界上第一次给出勾股数组通解公式的是《九章算术》勾股章「甲乙同所立」、「甲乙出邑中央」二问。前者是:「今有二人同所立,甲行率七,乙行率三。乙东行,甲南行十步而邪东北与乙会。问甲、乙行各几何?」显然,在勾股形中,甲行 c + a ,乙行b,而。

《九章算术》先求出南行率即勾率,东行率 b = mn,
斜行率,或
然后由已知的南行步数,利用今有术,便求出东行和邪行步数。

这裏勾、股、弦三率就是勾股数组的通解公式,后一个问题也给出此式。在现代数论中,其为通解的条件是 m , n 是互素的奇数。《九章算术》的两个例题都符合这个条件。刘徽用出入相补原理证明了这个公式。

在国外,数论界公认最先给出勾股数通解公式的是古希腊的丢番都,他大约与刘徽同时,比《九章算术》晚了四百多年,而且他的运算式需要经过变换,才如《九章算术》那样的规范。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-01-30
定义:凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
===========================================
相关的解释:

①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。

②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。

③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。

设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解。

例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17,10、24、26…等。

再来看下面这些勾股数:3、4、5,5、12、13,7、24、25,9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。

观察分析上述的勾股数,可看出它们具有下列二个特点:

1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。

2、一个直角三角形的周长等于短直角边的平方与另两边的和。

掌握上述二个特点,为解一类题提供了方便。

例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?

用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。

用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。

勾股数的通项公式:
题目:已知a^2+b^2=c^2,a,b,c均为正整数,求a,b,c满足的条件.
解答:
结论1:从题目中可以看出,a+b>c (1),联想到三角形的成立条件容易得出。
结论2:a^2=c^2-b^2=(c+b)*(c-b) (2)
从(2)中可以看出题目的关键是找出a^2做因式分解的性质,令X=c+b,Y=c-b
所以:a^2=X*Y,(X>Y,a>Y) (3)
首先将Y做分解,设Y的所有因子中能写成平方数的最大的一个为k=m^2,所以Y=n*m^2 (4)
又(3)式可知a^2=X*n*m^2 (5)
比较(5)式两边可以a必能被m整除,且n中不可能存在素数的平方因子,否则与(4)中的最大平方数矛盾。
同理可知a^2=Y*n'*m'^2 (6),X=n'*m'^2,且 n'为不相同素数的乘积
将(5)式与(6)式相乘得a^2=(m*m')^2*n'*n,(n,n'为不相同素数的乘积) (7)
根据(7)知n*n'仍然为平方数,又由于n',n均为不相同素数乘积知n=n'(自行证明,比较简单)
可知a=m'*m*n
c=(X+Y)/2=(n*m^2+n*m'^2)/2=n*(m^2+m'^2)/2
b=(X-Y)/2=n*(m'^2-m^2)/2
a=m*n*m'
..............
................

参考资料:http://baike.baidu.com/view/148142.htm

第2个回答  2008-01-30
凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。

②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。

③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。

设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解。

例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17,10、24、26…等。
第3个回答  2008-01-30
勾股数
凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
譬如:3、4、5,还有5、12、13等等
第4个回答  2008-01-30
A方+B方=C方
A,B,C就是一组勾股数
第5个回答  2008-01-30
就是譬如:a^2+b^2=c^2这样的三个数就是勾股数.
如:3^2+4^2=5^2,那么3,4,5就是一组勾股数.
相似回答