这是什么意思?谁能解释一下?关于集合的。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。

这句话是什么意思?

【并集】

在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。

基本定义 :
若 A 和 B 是集合,则 A 和 B 并集是有所有 A 的元素和所有 B 的元素,而没有其他元素的集合。 A 和 B 的并集通常写作 "A ∪B"。

形式上:x 是 A ∪B 的元素,当且仅当 x 是 A 的元素,或 x 是 B 的元素。

举例:集合 {1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不 属于素数集合 {2, 3, 5, 7, 11, …} 和偶数集合 {2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。

更通常的,多个集合的并集可以这样定义:例如,A, B 和 C 的并集含有所有 A 的元素,所有 B 的元素和所有 C 的元素,而没有其他元素。

形式上:x 是 A ∪B ∪C 的元素,当且仅当 x 属于 A 或 x 属于 B 或 x 属于 C。

代数性质:

二元并集(两个集合的并集)是一种结合运算,即 A ∪(B ∪C) = (A ∪B) ∪C。事实上,A ∪B ∪C 也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。

相似的,并集运算满足交换率,即集合的顺序任意。

空集是并集运算的单位元。即 {} ∪A = A,对任意集合 A。可以将空集当作零个集合的并集。

结合交集和补集运算,并集运算使任意幂集成为布尔代数。例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。若将并集运算换成对称差运算,可以获得相应的布尔环。

无限并集:
最普遍的概念是:任意集合的并集。若 M 是一个集合的集合,则 x 是 M 的并集的元素,当且仅当存在 M 的元素 A,x 是 A 的元素。即: <math>x \in \bigcup\mathbf \iff \exists A{\in}\mathbf, x \in A.</math>
无论集合 M 本身是什么,M 的并集是一个集合,这就是公理集合论中的并集公理。

例如:A ∪ B ∪ C 是集合 {A,B,C} 的并集。同时,若 M 是空集, M 的并集也是空集。有限并集的概念可以推广到无限并集。

上述概念有多种表示方法:集合论科学家简单地写 <math>\bigcup \mathbf</math> , 而大多数人会这样写 <math>\bigcup_{A\in\mathbf} A</math> 。 后一种写法可以推广为 <math>\bigcup_{i\in I} A_</math> , 表示集合 {Ai : i is in I} 的并集。这里 I 是一个集合,Ai 是一个 i 属于 I 的集合。在索引集合 I 是自然数集合的情况下,上述表示和求和类似: <math>\bigcup_{i=1}^{\infty} A_</math> 。
同样,也可以写作 "A1 ∪ A2 ∪ A3 ∪ ···". (这是一个可数的集合的并集的例子,在数学分析中非常普遍;参见σ-代数)。最后,要注意的是,当符号 "∪" 放在其他符号之前,而不是之间的时候,要写的大一些。 交集在无限并集中满足分配律,即 <math>\bigcup_{i\in I} (A \cap B_) = A \cap \bigcup_{i\in I} B_</math> 。 结合无限并集和无限交集的概念,可得 <math>\bigcup_{i\in I} (\bigcap_{j\in J} A_{i,j}) \subseteq \bigcap_{j\in J} (\bigcup_{i\in I} A_{i,j}).</math>

【交集】数学上,两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。

A 和 B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A且 x 属于 B。

例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。数字 9 不属于素数集合 {2, 3, 5, 7, 11} 和奇数集合 {1, 3, 5, 7, 9, 11}的交集。

若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。

更一般的,交集运算可以对多个集合同时进行。例如,集合 A,B,C 和 D 的交集为 A ∩B ∩C∩D =A∩(B ∩(C ∩D))。交集运算满足结合律,即 A ∩(B∩C)=(A∩B) ∩C。

最抽象的概念是任意非空集合的集合的交集。若 M 是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CsA.

在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。

补集可以看作两个集合相减,有时也称作差集。

1:若 A,B,C 是集合,则下列恒等式成立:

C − (A ∩B) = (C − A) ∪(C − B)

C − (A ∪B) = (C − A) ∩(C − B)

C − (B − A) = (A ∩C) ∪(C − B)

(B − A) ∩C = (B ∩C) − A = B ∩(C − A)

(B − A) ∪C = (B ∪C) − (A − C)

A − A = Ø

Ø − A = Ø

A − Ø = A

若给定全集 U,则 A 在 U 中的相对补集称为 A 的绝对补集(或简称补集),写作 AC,即:

AC = U − A

与补集有关的运算规律
求补律
A∪CsA=S
A∩CsA=Φ
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B

集合的表示方法:常用的有列举法和描述法。
1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3.图式法:为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。

常用数集的符号:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,记作R
(6)复数集合计作C

集合的运算:
1.交换律
A∩B=B∩A
A∪B=B∪A
2.结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)

2德.摩根律
Cs(A∩B)=CsA∪CsB
Cs(A∪B)=CsA∩CsB

3“容斥原理”
在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3

card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
1985年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。

吸收律
A∪(A∩B)=A
A∩(A∪B)=A
求补律
A∪CsA=S
A∩CsA=Φ

写了这么多
行行好再给个10分吧!!!
<你的悬赏分为0哦>
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-10-26
查“罗素悖论”,属于“第三次数学危机”啦
可以长点见识本回答被提问者采纳
相似回答