曲线积分的公式是什么?

如题所述

secx=1/cosx

∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx

=∫1/(1-sinx的平方)dsinx

令sinx=t代人可得:

原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt

=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt

=-1/2ln(1-t)+1/2ln(1+t)+C

将t=sinx代人可得

原式=[ln(1+sinx)-ln(1-sinx)]/2+C

扩展资料:

在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重,一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积。

带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜