相干体技术在天然气水合物解释中的应用及研究

如题所述

沙志彬1,2 张光学2 张明2 梁金强2

(1.中国地质大学(武汉)武汉 430074 2.广州海洋地质调查局 广州 510760)

基金项目:国家高技术研究发展计划课题(编号:2005AA611050)资助。

第一作者简介:沙志彬(1972.4—),男,高级工程师,主要从事石油地质和天然气水合物的研究。

摘要 在天然气水合物的地震资料解释过程中,常规(叠加和偏移)地震剖面上难以识别天然气水合物赋存区域。通过近年的实践,认为相干体数据及切片能够较好地揭示天然气水合物的地球物理异常特征,从而给识别天然气水合物和划分其赋存区域提供有力的证据,增加了一种可用于天然气水合物的检测技术。

关键词 天然气水合物 相干体 应用 研究

1 前言

相干体处理解释技术在油气勘探与开发项目的研究中已经得到广泛的应用,为解决复杂地区地质情况和日益增多的地震数据量等问题起到了重要作用[1]。它不仅提高了地震资料解释的效率和精度,使三维地震资料得到充分应用,同时能够很好地突出数据的不连续性,快速准确的识别断层、特殊岩性体及地层沉积特征,直接对目标体和沉积层进行直观和精细的描述。相干体处理解释技术已经成为三维地震资料解释中不可缺少的技术方法[2]

2 相干性的基本原理

由震源激发产生的地震子波,在向下传播的过程中,遇到波阻抗分界面,发生反射和透射,形成地震波。地震波到达测线接收点,视速度不变,或者只沿测线方向有缓慢变化。而测线布置的观测点相距不远,满足空间采样定理,因此同一个相位在相邻地震道上的到达时间也是相近的,每一道记录下来的振动图是相近的,并且会一个个套在一起,形成一条平滑的有一定长度的同相轴,这个特点叫做相干性。相干技术就是从相邻地震道相互之间的相干性出发,给出一定量描述。对于三维地震数据体,通过对主测线和联络测线方向计算某一时间域内波的相似性,可获得三维地震相干体,因此相干体是指三维数据相干性的一种三维数据体[3]

当地下目的层存在断层和地层不连续性变化时,在局部一些地震道上会表现出与相邻地震道不同的反射特征,因而导致道与道之间相关性方面的极不连续性,即断层所产生的地震错动,会在相应道的相关曲线中出现极高的不相关特性[4](图1)。利用这一原理,通过对三维数据体的不连续性进行分析,便可识别构造和断层的分布,使解释人员在解释之前就能获得研究区概略的构造几何形态及断层分布情况。充分利用三维地震数据体原已存在的空间分布信息,能够减少复杂情况人为因素造成的误差及由此而产生的多解性。

图1 断层引起的波形变化示意图

Fig.1 Sketch map of wavelet movement by the fault

3 相干性的计算方法

自相干性的概念及应用方法提出以来相干算法本身在不断发展。大致分为三种类型:第一代算法C1,即归一化互相关,采用三道相干处理,对于高品质的资料具有很好的检测效果,分辨率也最高;第二代算法C2,即任意多道相似性算法,采用多道相干处理,其分析结果分辨率稍低,但抗噪能力较强;第三代算法C3,亦称作特征构造,它把多道地震数据组成协方差矩阵,应用多道特征分解技术求得多道数据之间的相关性[5~7]

目前常用软件中相干性算法是能量归一化后的互相关计算,属于第一代算法C1。

首先定义纵测线上t时刻、道位置在(xi+yi)和(”i+l,yi)与地震道u之间延迟为l的互相关系数

南海地质研究.2007

式中2ω为相关时窗的时间长度。

再定义横测线上t时刻、道位置在(xi,yi)和(xi+l,yi)与数据道延迟为m的互相关系数为

南海地质研究.2007

把上面纵测线(l延迟)和横测线(m延迟)的相关系数组合起来就得到相关系数ρxy的三维估计:

南海地质研究.2007

式中:masρx(t,l,xi,yi)和maxρy(t,m,xi,yi)分别表示时移为l和m时,ρx和ρy为最大值。对于高质量的地震数据,时移l和m可分别近似计算出每道在”和y方向上的视时间倾角。第一代算法是先计算主测线、联络测线方向的相关系数,最后合成主联方向相关系数。其优点是计算量小,易于实现。缺点是受资料限制较大,时窗大,抗噪性差。

第二代算法,即C2算法,可对任意道数进行相似分析,估计其相干性。先定义一个以τ时刻为中心的j道椭圆或矩形分析时窗,在时窗内取j道相邻地震数据u,如果分析点坐标轴为(”,y)则定义相似系数为δ(τ,p,q):

南海地质研究.2007

式中:p和q分别表示”,y方向上的视倾角,上标H表示希尔伯特变换或地震道u的正交分量。若时窗取[-K,K],则平均相似系数为

南海地质研究.2007

式中:Δt为采样时间间隔。第二代算法对任意多道地震数据计算相干,基于水平切片或层位上一定时窗内计算。其优点是对地震资料的质量限制不严,抗噪性强。利用可变时窗,即用一个适当大小的分析窗口,能够较好地解决提高分辨率和提高信噪比之间的矛盾。因此,该算法具有较好的适用性和分辨率,而且具有相当快的计算速度,缺点是不能正确反映地层倾角变化。

第三代算法,即C3相干算法是用基于相似的相干算法对任意多道地震数据进行相干计算。该方法是借助协方差矩阵C来实现的。设λj(j=1,2,L,J)是协方差矩阵C的第j个特征值,其中λ1是其最大的特征值。C3相干算法的计算公式为

南海地质研究.2007

第三代算法以多道或多个子体为对象进行道比较和相似性计算,同时进行基于层位的倾角和方位角估计,从常规数据的纵测线地震显示上估计真倾角最大值来定义离散视倾角范围。通常当地层具有走向和倾向多边特征时,如盐底辟、前积三角洲,火山岩地层等,计算出独立的相干数据体、倾角数据体、方位角数据体,利用HLS(色调、光亮度、饱和度)彩色模型显示相干、倾角、方位角多个地震属性[6]

4 相干体参数的选择

图2 相干道数示意图

Fig.2 Sketch map of the number of coherent channel

相干模式的选择有两个问题要解决,一是选取多少道参与相干计算最为合适,一是相干时窗大小的选择。针对第一个问题,选用不同的数据做了相关试验,分析认为:选取的道数多少应与地质异常体的大小有密切关系。如果选取道数太多,就无法发现小的地质异常体,且定位不准确;如果选取的道数太少,受地震数据体噪声的影响就很大,以至于影响正常解释工作。一般的,相干道数选择包括线性3道、正交3道、正交5道、正交9道(图2)。通过试算可知,参与计算的道数越多,平均效应越大,对断层的分辨率反而会降低;相反,相干道数少,就会提高断层、特别是对小断层的分辨率。因而在计算地震相干数据体时应根据不同研究目标来选择计算的道数[1~3]

相干时窗的大小由解释员根据地震反射波的视周期T而定,通常取T/2~3T/2。当计算的相干时窗小于T/2时,由于相干时窗小、视野窄,看不到一个完整的波峰或波谷,据此计算出的不相干数据带反映噪声的几率比反映小断层的几率大;当计算的相干时窗大于3T/2时,由于相干时窗大,可以看到多个地震反射同相轴,据此计算出的不相干数据带反映同相轴连续的几率比反映断层的几率大[3,4]。可见相干时窗取得太大与太小都会降低对断层的分辨能力。通过多次对比试验,认为采用线性3道、时窗32ms计算得到的地震相干数据体有利于开展天然气水合物的解释工作[6,7]

5 相干算法的试验与结论

2005和2006年我局先后在南海北部陆坡区神狐海域研究区进行准三维采集,地震数据质量较以前有较大提高,定位精确,具有较高的信噪比和分辨率。结合该研究区的构造背景,分别应用三代相干算法对神狐研究区地震数据进行相干计算,结果见图3。图3a,图3b,图3c分别是用C1,C2,C3三代算法计算出的相干体水平切片,白色代表相干性高,黑色代表相干性低。水平切片上黑色窄带反映相干性很低的断层。从图3a,图3b,图3c三幅图中都可以看出本区域断层比较发育,断层走向以东西向为主。比较三幅图,图3a中,不仅上部和下部的大断层清晰可见,中部还可以分辨出南北方向的细小断层,而在图3b和图3c中此处的细小断层均不可识别。因此,对于该研究区的地震资料,采用第一代相干算法计算得到的相干数据体分辨率较高[6,7]

通过试验分析得出如下结论:相干算法的选择综合考虑参与计算的研究区地震资料的质量及研究区内的构造特征。若研究区地震数据信噪比较高,应用第一代相干算法得到的相干数据体分辨率最高,利于识别小断层;若地震资料信噪比稍低则应用第二代算法可得到分辨率较高相干数据体;对于构造变化复杂、地层倾角较大的研究区要选用第三代算法才能正确反映地层倾角的变化[3,4]

6 天然气水合物的相干性分析

通过对三维数据体的各种逻辑关系和物理属性的分析研究,认为地震三维数据体的不相关性主要反应断层及岩性变化;相关性主要反映岩性的均一性和地层的连续性。据此进行相干体解释时,高连续性数据对应均一岩性体和连续的地层;中等连续性数据对应层序特征;窄条带低连续对应断层、岩性的变化或特殊岩性的边界;宽条带低连续对应数据质量不好或无反射层位[3]

由于特殊地质体和周围地层的地震反射有着不同的相干性,所以特殊岩性体在相干切片上能清楚地反映出来。应用相干数据可以确定某些岩性异常体的边界,为这些异常体的圈定提供辅助手段。目前,三维相干技术的发展比较成熟,一些学者[3,4]利用相干技术,预测了火成岩、碳酸盐岩等特殊岩性体的分布范围,实现特殊岩性体的准确成像,取得了良好的效果。但现在还很少应用相干性分析天然气水合物这种特殊岩性体[3~5]

图3 三代相干算法效果比较图

Fig.3 The map of the effect of three kinds of coherent calculation methods

在充分研究前人工作的基础上,依据天然气水合物的地球物理特征,对叠前偏移数据体进行相干处理,得到相干体数据,分析总结水合物在相干数据体上的响应[1~3]。研究发现:排除构造因素,通过用其他地震检测手段识别出的含水合物的地层在相干体上表现出很高的相干性,与周围地层相干性差异明显;同样,含水合物地层在相干体切片上表现出高相干性的属性特征。分析认为这种现象可能是因为地层填充水合物导致地层岩性相对均一,相邻地震道反射相似性高[8~10]

以神狐海域研究区为例,250线地震剖面上(图4(a)),可以看到同一沉积地层(A区域和B区域)同相轴连续性好,两者之间没有明显的差异;在相干剖面上(图4(b))却表现出相干性差异,没有水合物充填区域为中相干性(B区域),而有水合物充填区域为强相干性(A区域)。因此,利用相干体技术可以圈定天然气水合物的分布范围[6,7]

图4 神狐海域研究区250线地震剖面(a)与相干剖面(b)

Fig.4 The Seismic and coherent profi1e of Line 250 in the study of Shenhu offshore

此外,对神狐海域研究区的整个相干数据体进行分析,自海底以下间隔固定时窗(时窗小于识别矿体厚度)分别对两个BSR区域提取相干切片。分析发现在东南BSR区块的2000ms相干体切片上(图5(a)),230-320线,400-600道范围内,有一亮白色团块(在相干体切片中白色代表高相干性,黑色代表低相干性);在相同区域,2050ms和2100ms相干切片上仍可以清楚地分辨出两块高相干性团块(图5(b),5(c))。通过与BSR分布图对比发现,该区域与BSR的分布范围基本吻合,处于BSR上的空白带内,由此推测高相干性可能是含天然气水合物所致;同样,在西北BSR区块的1700ms到1900ms相干体切片上亦表现出高相干性。因此,可以利用相干体技术推测水合物在此区域是否赋存,并且可以大致圈定水合物的分布范围[6,7]

在相干体数据的应用中,相干性是对地震道进行去同存异,突出断层、特殊岩性体等地质现象,而影响地震道相干性因素复杂,地震道间相似程度往往受多种因素影响。因此,在水合物矿体的预测中,必须综合利用相干体与其他分析检测技术(AVO反演、波阻抗反演、瞬时属性剖面、能量半衰时剖面等),去伪存真,共同确定水合物矿体的展布[11~15]

图5 神狐海域研究区东南BSR区块相干体切片

Fig.5 The slice of coherent profile of southeastern BSR area in the study of Shenhu offshore

7 认识与讨论

总结本文得出以下几点认识与讨论:

1)本文尝试运用相干体技术来识别天然气水合物的地球物理特征,形成了一项可用于天然气水合物的检测技术;

2)实践证明可以利用相干体技术推测水合物在此区域是否赋存,并且可以大致圈定水合物的分布范围;

3)针对天然气水合物进行的相干体研究尚处于初级阶段,需要进一步的研究及完善;

4)相干性数据受多种因素影响,在天然气水合物矿体的预测中,必须联合利用其他分析检测技术(AVO反演、波阻抗反演、瞬时属性剖面、能量半衰时剖面等),去伪存真,才能综合确定水合物矿体的展布。

参考文献

[1]何汉漪著.海上高分辨率地震技术及其应用.地质出版社,2001,7,27~44

[2]李正文,赵志超.地震勘探资料解释[M].北京:地质出版社,1988

[3]王玉学,韩大匡,刘文岭等.相干体技术在火山岩预测中的应用,石油物探[J].2006,45(2):192~196

[4]王永刚,刘礼农.利用相干数据体检测断层与特殊岩性体,石油大学学报[J].2000,24(1):69~72

[5]俞益新.碳酸盐岩岩溶型储层综合预测概述,中国西部油气地质[J].2006,2(2):189~193

[6]张光学,耿建华,刘学伟等.“天然气水合物探测技术”之子课题“天然气水合物地震识别技术”,“十五”863,2005

[7]张明,张光学,雷新华等.南海北部海域天然气水合物首钻目标优选关键技术报告,“十五”快速863,2006

[8]宋海斌,张岭,江为为等.海洋天然气水合物的地球物理研究(Ⅲ):似海底反射[J].地球物理学进展,2003,18(2),182~187

[9]沙志彬,杨木壮,梁金强等.BSR的反射波特征及其对天然气水合物识别的应用[J].南海地质研究(15),北京:地质出版社,2004,55~61

[10]张光学,黄永样,陈邦彦等.海域天然气水合物地震学[M].北京:海洋出版社,2003

[11]Ecker C,Dvorkin J,Nur A M.Estimating the amount of gas hydrate and free gas from marine seismic data[J].Geophysics,2000,65,565~573

[12]Miller J J,Myung W L,von Huene R.An analysis of a reflection from the base of a gas hydrate zone of peru[J].Am.Assoc.pet.Geo1.Bull.1991,75,910~924

[13]Wood W T,Stoffa P L,Shipley T H.Quantitative detection of methane hydrate through high-resolution seismic ve1ocity analysis[J].J.Geophys.Res.1994,99,9681~9695

[14]Sloan E D.Clathrate Hydrates of Natural Gas.Marcel Dekker,New York,1990

[15]Katzman R,Holbrook W S.Paull C K.Combined vertical-incidence and Wide-angle seismic study of gas hydrate zone,Blake Ridge[J].J.Geophy.Res.1994,99:17975~17995

Recognizing GaS HydrateS SeiSmic Character by Application and Study of the Body of Coherent Data

Sha Zhibin1,2 Zhang GuangXue2 Zhang Min2 Liang Jinqiang2

(1.China University of Geosciences(Wuhan),Wuhan,430074;2.Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:During interpretation of the profile of natural gas hydrates,it’s very difficult to distinguish zone of gas hydrates from the profile of stack and migration.Through our practice in these several years,We think that the body of coherent data and the slice of them in Which abnormal physical geography character of gas hydrates can be shown preferably.So that We can use this kind of data to judge seismic character of gas hydrates,and the area of them that exist.By this means we can recognize gas hydrates.

Key Words:Gas hydrates The body of coherent data Application and study

温馨提示:答案为网友推荐,仅供参考
相似回答