y(1-x^2)dy+x(1+y^2)dx=0 求微分方程的通解。

如题所述

x(y^2+1)dx=-y(1-x^2)dy
x(y^2+1)dx=y(x^2-1)dy
两边同除以 (y²+1)(x²-1)即可得:y/(1+y²)dy=x/(x²-1)dx
两边积分,得
ln(1+y²)=ln(x²-1)+lnc
微分方程的通解为:
1+y²=c(x²-1)

即y²=c(x²-1)-1
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-06-17
y(1-x^2)y'+x(1+y^2)=0

[-(x^2-1)^2/2]* [(y^2+1)/(x^2-1)]'=0

[(y^2+1)/(x^2-1)]'=0
(y^2+1)/(x^2-1)=C [x!=1]
结果,

(y^2+1)=C* (x^2-1) [x!=1]
相似回答