cosA的计算公式是怎么推导出来的?

如题所述

由余弦定理公式推导出:cos A=(b²+c²-a²)/2bc。

余弦定理:设三角形的三边为a b c,他们的对角分别为A B C,则称关系式:

a^2=b^2+c^2-2bc*cosA

b^2=c^2+a^2-2ac*cosB

c^2=a^2+b^2-2ab*cosC

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题。

扩展资料:

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:

一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。

△ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正弦定理进行变形有

1. 

2.   

3. 

4.  (等比,不变)

5.  (三角形面积公式)

温馨提示:答案为网友推荐,仅供参考
相似回答