煤层气钻井

如题所述

我国的煤层气地面勘探开发经过十余年的实践,已取得了重大突破。其中具代表性、实现小规模商业性煤层气地面开发的项目有:山西沁水枣园井组煤层气开发试验项目,辽宁阜新刘家井组煤层气开发项目,山西晋城潘庄煤层气地面开发项目,山西沁南煤层气开发利用高技术产业化示范工程——潘河先导性试验项目,山西省沁水县端氏煤层气开发示范工程。

7.2.1 确定井类

煤层气开发活动中使用了3种类型的钻井方式,即采空区钻井、水平钻井和垂直钻井(图7.1)。

图7.1 煤层气井类型

(据苏现波等,2001)

图7.2 排泄孔钻井工艺

(据苏现波等,2001)

采空区钻井是从采空区上方由地面钻入煤层采空区。采空区顶板因巷道支架前移而塌落,产生的裂缝使气体从井中排出。如果采空区附近还有煤层并和采空区相连通,则气体产出量增大。从采空区采出的气体因混有空气往往使热值降低。

水平钻井有两种类型,一种是从煤矿巷道打的水平排气井,主要和煤矿瓦斯抽放有关;另一种是从地面先打直井再造斜,沿煤层水平钻进(排泄孔),其目的是替代垂直井的水力压裂强化(图7.2)。如果煤层出现渗透率各向异性,打定向排泄孔可以获得较高产量,该方法适用于煤厚大于1.5 m的厚煤层,但成本较高。

垂直井是目前用于煤层气开采的主要钻井类型,垂直井直接从地面钻入未开采的煤储层。依据钻井目的不同可将其分为4种类型,即取心资料井、测试试验井、生产井和观测井。在新勘探区,为建立地质剖面、掌握煤层及围岩的地质资料、估算资源量,就必须布置取心井,采取岩心和煤心样进行化验分析,特别是煤层顶、底板附近的岩心,应了解其力学性质及封闭性能,同时采集煤心样进行含气量和渗透率测定以及常规工业分析及煤岩分析等。煤心样对于了解煤层深度、厚度、吸附气体含量和吸附等温线的测定以及解吸时间的确定等至关重要。为了满足煤心含气量测试的要求,常常采用绳索半合式取心装置,以缩短取心和装罐时间,减少气体散失。

对于选定的试验区,要进一步了解围岩的地应力和煤层的渗透性,掌握煤层的延伸压力(岩石扩张裂隙的最小应力)、闭合压力(岩石的最小水平应力)和小型压裂压力,选择压裂方向,进行压裂设计,就需要有试验井。由于地应力测试是在裸眼井条件下进行的,所以试验井的钻井,必须保证井壁的稳定性,防止煤层有较大的扩径。为此,应采用平衡钻井工艺。

为开采煤层气,就必须打生产井。生产井的主要问题是稳定产层,减少储层污染伤害。因此,在生产井钻进时,应严格操作标准,采用平衡-欠平衡钻井工艺,使用低pH值(pH=5.5~7.5)的非活性泥浆,或采用雾化空气钻进和地层水钻进,尽量减少对煤的基质和矿物成分的影响,确保煤层割理(或裂隙)系统的清洁、畅通。

在生产开发区,为获取储层参数、掌握煤层气井的生产动态,还需要设置观测井,这类井常采用平衡钻井工艺和稳定的裸眼完井技术。

煤层气井的井孔设计应尽可能相互兼顾,做到一井多用,以降低费用。

7.2.2 钻井设计

在尽可能多地获得地层和储层参数并加以分析后,就可以进行钻井的设计工作。钻井设计很大程度上决定了所用钻井、完井、生产工艺类型以及所需的设备。

钻井设计应包括钻井地质设计、钻井工程设计、钻井施工进度设计和钻井成本预算设计4部分。设计的基本原则是:①钻井地质设计要明确提出设计依据、钻探目的、设计井深、目的层、完钻层位及原则、完井方法、取资料要求、井深质量、产层套管尺寸及强度要求、阻流环位置及固井水泥上返高度等;②钻井地质设计要为钻井工程设计提供邻区、邻井资料,设计地层水、气及岩石物性,设计地层剖面、地层倾角及故障提示等资料;③钻井工程设计必须以钻井地质设计为依据,钻井工程设计应有利于取全、取准各项地质工程资料,保护煤层,降低对煤层的伤害,保证井身质量符合钻井地质设计要求,为后期作业提供良好的井筒条件;④钻井工程设计应根据钻井地质设计的钻井深度和施工中的最大负荷,合理选择钻机,所选钻机不得超过其最大负荷能力的80%;⑤钻井工程设计要根据钻井地质设计提供的邻井、邻区试气压力资料,设计钻井液密度、水泥浆密度和套管程序;⑥钻井工程设计必须提出安全措施和环境保护要求。

钻井设计的主要内容包括井径、套管选择以及井身结构。

7.2.3 钻井

由于煤层气储层特性的特殊性,使得煤层气井的钻进过程必须突出两个目标:防止地层伤害和保障井孔安全。需要注意的问题应包括:地层伤害,高渗透层段的钻井液漏失,高压气、水引起的井喷以及井筒稳定性。

7.2.3.1 煤层气井的钻进方式

煤层气井的钻进方式一般有两种:普通回转钻进和冲击回转钻进(图7.3)。

图7.3 煤层气井钻进方式示意图

(据苏现波等,2001)

钻进方式的选择主要取决于煤层的最大埋深地层组合、地层压力和井壁稳定性。对于松软的冲积层和软岩层,可采用刮刀钻头;中硬岩层和硬岩层更适于用牙轮钻头。

一般来说,浅煤层钻井地层压力一般较低(小于或等于正常压力),宜选用冲击回转钻进,用清水、空气或雾化空气作循环介质。这一方法钻进效率高,使用非泥浆体系的欠平衡钻进工艺也减少了泥浆滤液对储层的伤害。当钻遇裂隙发育并产生大量水的地层冲击钻头时,以空气和流体混合交替方式钻进往往是最经济、有效的方法,并且对井孔的损害最小。深煤层钻井,由于地层压力一般较高(大于正常压力),井壁稳定性较差。因此,使用水基泥浆体系的普通回转钻进工艺,以实现平衡压力的目的。当使用泥浆钻进时,应特别注意尽量降低对煤层井段的地层伤害,因为煤中裂隙一般都很发育,即使采用平衡钻进,也会引起少量滤液进入煤层。

在某些超压区进行钻进时,为确保井壁稳定性和钻井安全问题,常常使用微超平衡水基钻液。

7.2.3.2 煤层气井的钻井参数

在煤层段钻井,应采用“三低钻井参数”,即低钻压、低转速和低排量。根据所钻煤层的特殊情况,一般选取钻压为30~50kN,转速为50~70r/min,泵排量为15~20L/s。

在非煤层段钻井时,可根据实际情况增大钻压、转速和泵排量,快速钻进,提高机械转速,缩短钻井时间。钻井参数可参照常规油气井确定的参数进行钻进。

7.2.4 取心

煤层气井的取心作业往往是获得详细的地层描述和储层特性的最直接、最可靠的方法。煤层气储层评价中,许多重要的储层参数都来源于取心样品的分析与测定。如煤中割理、煤质、含气量、吸附等温线、解吸时间和孔隙度等。因此,取准、取全第一手资料是煤层气储层评价的关键。具体地说,煤层气井的取心目的是:①测定煤层气含量,它是评价煤层气可采性的一个重要指标,也是煤层气储量计算和预测产量与开采期限的重要参数;②测定煤的吸附等温线,用来确定煤层气的临界解吸压力、解吸时间及可采储量;③割理、裂隙描述及方向测定,包括割理或裂隙的频数、方向、长度、宽度和矿化程度。这些数据是预测储层条件下流体扩散及渗透趋向等所必需的,其中割理或裂隙的方向是设计布井方向和射孔或割缝方向的重要依据。

为达到取心目的,煤层气井取心必须满足以下要求:

1)高的煤心采取率:提供足够数量的煤心,满足各种测试要求和保证测试精度。

2)短的气体散失时间:减少取心时间和出筒装罐时间,提高含气量测定的准确性。取心时间与取心方法和井深有关,取心后装罐时间一般应小于15min。

3)较大的煤心直径:通常以7.6~10.2cm较为适宜,以提高生产层评价质量。

4)保持完好的原始结构:进行割理、裂隙描述与方向测定,反映储层真实面目;降低煤心污染程度,提高数据质量。

温馨提示:答案为网友推荐,仅供参考
相似回答