遥感光谱数据的获取

如题所述

遥感技术从航空摄影测量逐步演变发展起来,大致经历了3个发展阶段:

1.航空摄影测量发展阶段

目前仍保存着的最早一帧航空相片是1860年J.W.布莱克从气球上拍摄的波士顿市的相片。在地质上的应用则始于1913年,有人在飞机上用摄影机对着非洲利比亚的本格逊油田摄影成像,并用这套肮空相片编制了本格逊油田地质图。航空摄影遥感主要以飞机或者气球为运载工具,用航空摄影机对目标获取信息,然后再经过负片和正片过程得到最终的航空相片。航空摄影利用的是电磁波可见光全色波段,用感光胶片接受所摄目标物反射来的太阳光线感光、成像,一般感光片的感光范围是0.3~0.9μm。航空摄影大多数情况下是垂直摄影,即航空摄影机主轴保持沿铅垂方向进行拍照;在特殊情况下,利用专门相机进行斜倾摄影。航空摄影按所利用的电磁波波段、相应的感光片及所成图像的特点,分成4种,即:航空可见光全色黑白图像;航空可见光真彩色图像:航空红外假彩色图像:航空红外黑白图像。其中,航空可见光全色黑白图像和航空红外假彩色图像最为常用,它们主要利用地物波谱的宽波段反射强度特性。

2.多光谱卫星遥感阶段

数字卫星成像首先是从气象卫星开始的,在1960年TIROS-1气象卫星提供了非常粗糙的卫星图像,主要用来展示云的样式。随后,在1970年代,美国国家海洋和大气管理局(NOAA)发射了甚高分辨率辐射传感器(AVHRR)进行气象预报,它的地面分辨率是1.1km,我们在电视气象预报节目中看到它所获得的云图。同时,从1970年代开始,相继发射了一些搭载更高分辨率传感器的卫星。如:1972年7月23日,美国国家航空和宇宙航行局(NASA)发射了第一颗专门用来进行地球表面监测和填图的地球资源技术卫星(ERTS-U),1975年被更名为陆地卫星(Landsat)。在Landsatl-3上都装有多光谱扫描仪(MSS),该扫描仪有4个波段,即绿、红和两个红外波段,地面分辨率约为80m。1982年,Landsat4搭载了专题制图仪(TM),它有7个波段,比MSS覆盖波谱范围更宽,波段宽度划分得更细些,更能反映地物反射光谱特性的变化规律,其地面分辨率除第6波段为120m外,均为30m。多光谱遥感的最典型特征是能够利用多个波段同时获取同一目标的多个波谱特征。这样就大大提高了遥感识别地物的能力。随后各国纷纷效仿,传感器的光谱范围从可见光、红外直至微波波段,应用范围也不断扩大。

3.成像光谱遥感技术发展阶段

成像光谱遥感技术是多光谱技术发展的一次跨越。Hunt的研究结果表明特征矿物的吸收宽度大约在20~40nm,而多光谱遥感数据(例如,MSS和TM)的光谱分辨率仅为100nm左右,因此遥感科学家们开始研究高光谱分辨率和空间分辨率的遥感传感器。1981年,一台航天飞机多光谱红外辐射计(SMIRR)随着美国航天飞机“哥伦比亚”号对地球表面进行了一次有限航带的观测,第一次实现了从空间通过高光谱分辨率遥感直鉴别碳酸盐岩以及粘土高岭土矿物,由此拉开了成像光谱遥感岩性识别的新篇章。继JPL的AIS-1和AIS-2以及AVIRIS航空成像光谱仪研制成功之后,加拿大也先后研制成功了FIL/PML,CAS1及SFSI等几种成像光谱仪(童庆禧等,1993)。其他的还有:HIRIS(high resolution imaging spectrometer)成像光谱仪,在0.4~2.5μm范围内有192 个光谱波段,地面分辨率30m,在0.4~1.0μm波长范围光谱分辨率为9.4nm,1.0~2.5μm范围内为11.7nm(Goetz& Herring 1989;Kerekes & Landgrebe,1991)。美国地球物理环境研究公司(Geophysical and Environ-mental Research Corporation)的63通道成像光谱仪(GER)是专门为地质遥感研究设计的,被多次用于岩性填图(郑兰芬等,1992;Bamaby W rockwell,1997)。除航空成像光谱仪外,美国和欧洲空间局(ESA)已制定了发展航天成像光谱仪的计划,其中美国的中分辨率成像光谱仪(MODIS)已经加入地球观测系统(EOS)发射入轨,对地球实现周期性的高光谱分辨率遥感观测。欧空局的中分辨率成像光谱仪(MERIS)也将于同时发射(童庆禧等,1993)。

从1990~1995年,Roger N.Clark等人先后利用AVIRIS数据在美国内华达州,卡普来特试验场进行了矿物和岩性的识别和填图,他们发现成像光谱仪不仅能区分地表发射光谱中总体亮度和坡度差异(多光谱技术MSS,TM和SPOT区分地物的基础),而且能得出用于识别特殊地物的光谱吸收波段,成像光谱数据的光谱分析可以对任何在测量光谱范围内有独特吸收特征的物质(矿物、植被、人T物体、水体、雪等)进行识别和填图(Clark,R.N.et al.,1996)。

中国科学院上海技术物理研究所是我国成像光谱仪的主要研制机构。1983年研制成功了第一台工作于短波红外光谱区(2.05~2.5μm)的6通道红外细分光谱扫描仪,其光谱分辨率在30~50nm之间。1987年,在国家和中国科学院黄金找矿任务的驱动下,该仪器发展到12个通道,其波段位置更趋于与地面粘土矿物、碳酸盐岩矿物的吸收波段相一致,因而在地质岩性识别方面具有更大的能力(童庆禧等,1993)。另外还有热红外多光谱扫描仪(TIMS),19 波段多光谱扫描仪(AMSS)以及71波段多光谱机载成像光谱仪(MATS)等。这些光谱仪的数据主要用于油气资源遥感(朱振海,1993)和矿物制图(王晋年等,1996)等方面,数据的处理技术和矿物识别的理论研究都取得了不同程度的进展(李天宏,1997)。

综观遥感光谱数据的获取,具有几个新的发展:

①扩展了应用光谱范围,增加了光谱波段;②提高了光谱和空间分辨率;③具有获得立体像对的功能,打破了只有航空相片才能有立体像对的能力(如SPOT图像);④改进了探测器性能或探测器器件,即线、面阵CCD器件;⑤提高了图像数据精度;⑥应用领域纵向发展,如用TM图像数据直接可以识别赤铁矿、针铁矿等矿物。

在20世纪末和21世纪初,空间高光谱成像卫星已成为遥感对地观测中的一项重要前沿技术,在研究地球资源、监测地球环境中发挥越来越重要的作用。

高光谱分辨率遥感技术的发展是20世纪末的最后两个10年中人类在对地观测方面所取得的重大技术突破之一,是当前乃至21世纪初的遥感前沿技术、通过高光谱成像所获取的地球表面的图像包含了丰富的空间、辐射和光谱三重信息。进入20世纪90年代后期,伴随着高光谱遥感应用的一系列基本问题,如高光谱成像信息的定标和定量化、成像光谱图像信息可视化及多维表达、图像-光谱变换、大数据量信息处理等的解决、高光谱遥感已由实验研究阶段逐步转向实际应用阶段,而作为高光谱遥感应用这一热点中的重点就是高光谱数据信息挖掘技术的提高和与之紧密相连的应用领域的扩展。

高光谱遥感数据最主要的特点是:将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成分信息反演与地物识别。它由以下3部分组成:

(1)空间图像维

在空间图像维,高光谱数据与一般的图像相似。一般的遥感图像模式识别算法是适用的信息挖掘技术。

(2)光谱维

从高光谱图像的每一个象元可以获得一个“连续”的光谱曲线,基于光谱数据库的“光谱匹配”技术可以实现识别地物的目的。同时大多数地物具有典型的光谱波形特征,尤其是光谱吸收特征与地物化学成分密切相关,对光谱吸收特征参数(吸收波长位置、吸收深度、吸收宽度)的提取将成为高光谱信息挖掘的主要方面。

(3)特征空间维

高光谱图像提供一个超维特征空间,对高光谱信息挖掘需要深切了解地物在高光谱数据形成的二维特征空间中分布的特点与行为,研究发现:高光谱的高维空间是相当空的,数据分布不均匀,且趋向于集中在超维立方体空间的角端,典型数据的差异性,可以映射到一系列低维的子空间,因此迫切需要发展有效的特征提取算法去发现保持重要差异性的低维子空间,从而有效地实现信息挖掘。

温馨提示:答案为网友推荐,仅供参考
相似回答