,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,4),其中x1,x2是方程

x2-4x-12=0的两个根。
(1)求抛物线的解析式
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC与点N,连接CM,当△CMN的面积最大时,求点M的坐标
(3)点D(4,K)在(1)中的抛物线上,点E为抛物线上一动点,在X轴上是否存在点F,使以A.D.E.F为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,若不存在,请说明理由

前2个问题以解决,差第三问。

x2-4x-12=0的两个根
x1=-2,x2=6
A(-2,0),B(6,0)
抛物线对称轴x=2
标准方程y=a(x-2)^2+b
把A,C代入得
0=16a+b
4=4a+b
两式相减得
a=-1/3,b=16/3
y=-1/3(x-2)^2+16/3
(2)设M(x0,0)
AC方程y=2(x+2)
BC方程y=-2/3(x-2)
MN方程y=-2/3(x-x0)
MN,AC联立得N((x0-6)/4,(x0+2)/2)
MN=√{[(x0-6)/4-x0]^2+[(x0+2)/2]^2}
=√13/4*(x0+2)
C到MN的距离为|4-2/3x0|/√[(2/3)^2+1]=2(4-2/3x0)/√13
所以S△CMN=1/2*√13/4*(x0+2)*2(4-2/3x0)/√13
=(x0+2)*(4-2/3x0)/4
=(x0+2)*(3-x0)/6
=1/6*(-x0^2+x0+6)
=-1/6*(x0^2-x0-6)
=-1/6*(x0^2-x0+1/4-1/4)+1
=-1/6*(x0-1/2)^2+1+1/24
当x0=-1/2时有最大值25/24追问

我差第三个问题的答案,

追答

点是存在的
D(4,k),因此E(x,k)
E在抛物线上
代入抛物线方程得
k=-1/3(x-2)^2+16/3
(x-2)^2=16-k
x=2±√(16-k)
当x≥4时,x=2+√(16-k)
DE=x-4=√(16-k)-2
Fx=-2+DE=√(16-k)
F(√(16-k),0)
当x≤4时,x=2-√(16-k)
DE=4-x=√(16-k)+2
Fx=-2-DE=-√(16-k)
F(-√(16-k),0)
因此F点是存在的,且有无数个。

追问

没有无数歌啊,你在看看

追答

因为你的K值不固定啊,随着K值的变化,就有无数个了。如果K值固定,由有两个,
F(√(16-k),0) E在x=4右边
F(-√(16-k),0) E在x=4左边
当K=16时,不存在平行四边形

追问

你把点D带入二次函数解析式就固定了,K=-4

追答

噢,没看到D在抛物线上,那再代入
不对啊
D在抛物线上应该只有一个点
把D代入抛物线方程得k=4
因此E(0,4)
F(-6,0)
只有这一个
好象第三问比第二问简单多了啊。这个题目很奇怪,居然第三问和第二问没关系。

追问

我用你的方法做是(2,0)和(-10,0)

追答

我刚开始看错了,因为D(4,k),抛物线开口朝下,因此只有一个交点,那么,就只能存在一个点了。因为AF的斜率是0的限制,其实大大简化了运算。这个题目第三问出的不好,没有利用第二问的结果,并且实际从运算量上来看,运算量要比第二问小很多。

第三问很差劲,只能这么说。

你画个图形,很容易就得出那个点的。注意AF∥DE,且斜率为0。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-12-12
x^2-4x-12=0
x1=-2,x2=6
y=ax^2+bx+c中,c=4,
x1x2=c/a=-12,a=-1/3
x1+x2=-b/a=4 ,b=4/3
y= -x^2/3+4x/3+4
x=4,y=4 D(4,4)
A(-2,0) F(x0,0)
四边形ADEF中,对角线AE的中点M
Mx=(-2+Ex)/2 My=Ey/2
如果ADEF是平等四边形DF中点也是M
Mx=(4+x0)/2 My=4/2
也就有Ey=4 Ex=0 x0=-6
因此存在点F(-6,0)和E(0,4)使ADEF成平行四边形
第2个回答  2011-12-12
3)已知抛物线为y=-x^2/3+4x/3+4,A(-2,0),D(4,4),AD斜率=2/3
设E(x0,y0),F(x,y)
AD//EF
AE//DF
则有:
(y-y0)/(x-x0)=2/3
y0/(x0+2)=(y-4)/(x-4)
y0=-x0^2/3+4x0/3+4
三式消去x0和y0即可求出x与y的关系(F点坐标)
第3个回答  2011-12-12
1.
设抛物线的解析式为y=a(x^2-4x-12)
将C代入:得a=-1/3
即抛物线的解析式为:y=-(1/3)x^2+(4/3)x+4;

2.
第4个回答  2011-12-12
(3)存在,把点d(4,k)代入二次函数的解析式y=-x^2/3+4x/3+4,k=4,点D(4,4),点,E,和点C重合,即E(0,4),因为点D和点E的纵坐标相等,所以DE平行X轴,而点F在X轴上,所以DE平行AF, AF=DE=4,AF=4,,AF=I-4-2I=6,F(-6.0) 所以点A,D,E,F,是平行四边形 ,,点F的坐标是(-6,0)追问

就这一个(-6,0)吗,还有没有其它的?

追答

没有其他的。只有这个点F(-6,0)

追问

点D(4,4)?是
你解析式搞错了,符号反了

追答

点A(-2,0),,B(6,0),,C(0,4),可得出二次函数的解析式Y=-X^2/3+4X/3+4,解析式的正确的,抛物线开口向下,与Y轴才会相交于C点(0,4)

第5个回答  2012-05-12
能不能用简便易懂的方法适合初三学生我们还没学斜率
相似回答
大家正在搜