已知定圆A:(x+1)²;+y²=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C

1,求曲线C的方程
2,若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点。

1.作图可以知道,点B在圆A中,如果动员M过点B,并且与圆A相切,那么两个圆只可能内切。即动圆M在圆A中。设动圆圆心为O,则OB为小圆半径,OA为连心距。并且满足OA+OB=4(大圆半径)。已知A(-1,0),B(1,0),到两个定点的距离之和为定长的点的轨迹是椭圆。两定点就是焦点。所以C的方程是:x^2/4+y^2/3=1
2.证明:由1知道椭圆方程是x^2/4+y^2/3=1,直线方程为3x0x+4y0y-12=0。
两个方程联立,消去y,得到二次方程
(3+9x0^2/4)x^2-18x0^2x+36/y0^2-12=0
这个二次方程的δ=b^2-4ac=0,所以直线也椭圆只有一个交点。
PS:椭圆方程可化为3x^2+4y^2-12=0。则过椭圆上任意一点P(x0,y0)的切线方程可以写为3x0x+4y0y-12=0,即把所有x^2变为x0x,把所有y^2变为y0y,若有一次项x,则把x变为(x+x0)/2,若有一次项y,则把y变为(y+y0)/2
这个对于你直接写出切线方程很有帮助!
温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-01-28
(I)解:圆A的圆心为A(-1,0) ,半径r1=4.
设动圆M的圆心 M(x,y),
由|AB|=2,
可知点B在圆A内,从而圆M内切于圆A,
故|MA|=r1-r2,即|MA|+|MB|=4,
所以,点M的轨迹是以A,B为焦点的椭圆,
设椭圆方程为x²/a²+y²/b²=1 ,
由 2a=2,2c=2可得a²=4,b²=3.
故曲线C的方程为x²/4+y²/3=1.
(II)解:当Yο=0时,由Xο²/4+Yο²/3=1可得Xο=±2.
当Xο=2,Yο=0时,直线l的方程为Xο=2.
直线l与曲线C有且只有一个交点(2,0).
当Xο=-2,Yο=0时,直线l的方程为Xο=-2.
直线l与曲线C有且只有一个交点(-2,0).
当Yο≠0时,直线l的方程为y=(12-3Xοx)/4Yο,联立方程组y=(12-3Xοx)/4Yο,x²/4+y²/3=1.
消去y,得(4Yο²+3Xο²)x²-24Xοx+48-16Yο²=0. ①
由点P(Xο,Yο)为曲线C上一点,
于是方程①可以化简为 x²-2Xοx+Xο²=0.
解得X=Xο,
将X=Xο代入方程y=(12-3Xοx)/4Yο可得y=Yο.
固直线l与曲线C有且只有一个交点P(Xο,Yο)
综上,直线l与曲线C有且只有一个交点,且交点为P(Xο,Yo).
参考来源:http://dayi.prcedu.com/question_204127&see=y
第2个回答  2011-01-28
相似回答