任何数的
0次方都是1.
一、令0^0=x
对任意数k,x^k=(0^0)^k=0^(0*k)=0^0=x
其中k可以为负数,此时0不是解。所以1是唯一解,意即1是0^0唯一合理的定义。
二、在
组合数学中,将n相异物分给m人的方法有m^n种,当n=0,不用分就可完成,本身就是一种方法。例如0!为0物作直线排列,C(0,0)为从0物中取0物的组合数都是1种方法,所以将0物分给0人也是1种方法。
貮、有些似是而非的理由会让人认为0的0次方无法定义,在此予以说明:
一、指数律的矛盾:
0^0=0^(1-1)=0^1/0^1=0/0,而0/0无法定义。
1=1^0/0^0=(1/0)^0
不成立原因:
指数律的适用性有其限制,当指数律遇到0的负数次方或
分母为0时,并不适用,既然不适用,就不能用来否定0^0=1。
如果指数律可以适用,会产生其它矛盾,不只在0^0。
0=0^1=0^(2-1)=0^2/0^1=0/0,变成0本身就无法定义。
0=0^1=0^[(-1)*(-1)]=[0^(-1)]^(-1)=(1/0)^(-1)
二、
lim x^y 不存在,
x->0,y->0
不成立原因:
极限值不存在亦无法推得函数值不能定义。
我们可以找出定义0^0=1的原因,而且又找不出矛盾来推翻它,所以可以推得0^0=1
追问有很多人说“除0外,任何数的0次方都等于1”。这个来自于一个定理:同底数幂相乘,底数不变,幂数相加。举例,2^2*2^(-2),它一边可以化作2^(2-2)=2^0,另一边可以看成是2*(1/2),这个运算推广开来就变成了x^0=1这个表达式。然而其推导过程中总是不能回避负幂次,即x做分母,此时底数x若为零则没有意义。所以是除了0以外的任何数,零次方都是1。这个又怎么解释?