储集层的孔隙结构

如题所述

上面讨论的孔隙度和渗透率,对于评价渗透率较高的储集层是适用的。而对于低渗透性储集层(渗透率小于0.987×10-3μm2),仅利用孔隙度和渗透率就无法正确评价储集层的性质,必须研究岩石的孔隙结构。

储集层的孔隙结构是指岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系。岩石的孔隙系统由孔隙和喉道两部分组成。孔隙为系统中的膨大部分,连通孔隙的细小部分称为喉道(图3-4)。油气水在储集层复杂的孔隙系统中渗流时,将要经过一系列交替存在的孔隙和喉道。

无论是在二次运移过程中石油驱替岩石中的水,还是在开采过程中石油从孔隙介质中被驱替出来,其渗流均受到流体通道中断面最小的部分(即喉道)所控制。显然,喉道的大小和分布,以及它们的几何形态是影响储集岩的储集能力和渗透特征的主要因素。孔隙结构实质上是岩石的微观物理性质,它能较深入而细致地揭示岩石的储渗特征。确定喉道的大小和分布是研究岩石孔隙结构的中心问题。

测定岩石孔隙结构的方法很多,有压汞法、孔隙铸体法、半渗透隔板法、离心机法、蒸气压力法等等。目前我国主要采用压汞法,并取得了较好的效果。

由于岩石的孔喉细小,当两种或两种以上互不相溶的流体同处于岩石孔隙系统中或通过岩石孔隙系统渗流时,必定会发生毛细管现象,产生一个指向非润湿相流体内部的毛细管压力,毛细管压力(pc)的大小与毛细管(喉道)半径(r)、界面张力(σ)和润湿角(θ)有关,简单的数学表达式如下:

石油与天然气地质学

图3-4 岩石孔隙系统示意图

图3-5 毛细管压力曲线图

压汞法就是根据这种毛细管现象的原理设计的。在不同的压力下,把非润湿相的汞压入岩石孔隙系统中,根据所加压力(相当于毛细管压力)与注入岩石的汞量,绘出压力与汞饱和度关系曲线,这种曲线称为毛细管压力曲线或压汞曲线(图3-5)。再据上述公式可计算出岩石孔喉等效半径,结合事先测得的岩石总孔隙度资料,就可作出孔喉等效半径分布图(图3-6)。运用这两张图可对岩石的孔隙结构进行分类评价。定量描述孔隙结构的参数有以下几个:

1)排驱(替)压力(pd):是指压汞实验中汞开始大量注入岩样的压力。换言之,是非润湿相开始注入岩样中最大的连通喉道的毛细管压力。在毛细管压力曲线上压力最小的拐点A(图3-5)所对应的压力即为排驱压力。岩石排驱压力越小,说明大孔喉越多,孔隙结构越好;反之,孔隙结构就越差。

2)孔喉半径集中范围与百分含量:利用孔隙等效半径分布图,可选取孔喉半径集中范围,计算出它的百分含量。在毛细管压力曲线上,曲线平坦段位置越低,说明集中的孔喉越粗;平坦段越长,说明集中的孔喉的百分含量越大。孔喉半径的集中范围与百分含量反映了孔喉半径的粗细程度和分选性。孔喉越粗,分选性越好,其孔隙结构越好。

3)饱和度中值压力(pc50):是指非润湿相饱和度为50%时对应的毛细管压力。与(pc50)相对应的喉道半径,称为饱和度中值喉道半径(r50),简称中值半径。pc50越低,r50越大,则岩石孔隙结构越好;反之,则越差。当岩样喉道半径接近正态分布时,r50可粗略地视为平均喉道半径。

4)最小非饱和孔隙体积百分数(Smin/%):当注入汞的压力达到仪器的最高压力时,仍没有被汞侵入的孔隙体积百分数,称为最小非饱和孔隙体积百分数。这个值与仪器的最高压力,岩石的润湿性、岩石颗粒大小、均一程度、胶结类型、孔隙度和渗透率等都有密切关系,它不总是代表束缚水饱和度。在不同条件下,Smin的测试值可在0~100%之间变化。为了便于对比,一般将小于0.04μm2的孔隙都称为束缚孔隙,束缚孔隙一般为水所占据。束缚孔隙含量愈大,储集层的渗流性能就越差。

由上述可知,岩石的排驱(替)压力越低,孔喉半径越大,分选性越好,束缚水孔隙度越低,则说明岩石的孔隙结构好,有利于油气的储存和渗滤;反之,孔隙结构则差,不利于油气渗滤。

温馨提示:答案为网友推荐,仅供参考
相似回答