一般风力发电机组的低电压穿越能力是如何实现的?

如题所述

电力电子论坛特约顾问:目前市场上风机类型可概括为三类, 即直接并网的定速异步机(FSIG)、同步直驱式风机(PMSG)和双馈异步式风机(DFIG)。 (1)直接并网的定速异步机(FSIG)低电压穿越能力(LVRT)的实现。 电压跌落期间FSIG的主要问题是电磁转矩衰减导致转速的飞升。最简单的方法是利用快速变桨来减小输入机械转矩, 限制转速上升。但风机桨叶具有很大的惯性,该方案需要风机有很好的变桨性能。 变桨控制不足之处在于无法提供无功以支持电网恢复。采用静态无功补偿SVC方案,实时补偿所需无功。稳态运行波形得到改善,提高了故障穿越能力。 (2)同步直驱式风机(PMSG)低电压穿越能力(LVRT)的实现。 电压跌落期间PMSG的主要问题在于能量不匹配导致直流电压上升。可采取措施储存或消耗多余的能量以解决能量的匹配问题。选择器件时放宽电力电子器件的耐压和过流值,并提高直流电容的额定电压。这样在电压跌落时可以储存多余的能量,并允许网侧逆变器电流增大,以输出更多的能量。这种方法从考虑增大功率输出和储能出发,较适用于短时的电压跌落故障。 减小同步机电磁转矩设定值,会引起发电机的转速上升,从而达到允许转速的暂时上升来储存风机部分输入能量,有效地减小了发电机的输出功率。也可直接采取变桨控制,减小风机的输入功率。结合增加器件容量的方法可进一步提高穿越裕度。 (3)双馈异步式风机(DFIG)低电压穿越能力(LVRT)的实现 与前两种机型相比, 双馈异步式风机在电压跌落期间面临的威胁最大。电压跌落出现的暂态转子过电流、过电压会损坏电力电子器件, 而电磁转矩的衰减也会导致转速的上升。 采用得较多的方法是在发电机转子侧装crowbar电路,为转子侧电路提供旁路。在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
温馨提示:答案为网友推荐,仅供参考
相似回答