2、3、4、5、6的最小公倍数为60。
解答过程如下:
因为2*3=6,所以2,3,6的最小公倍数为6,而4和6有公约数2,所以4和6的最小公倍数为4*6/2=12,所以 2,3,4,5,6的最小公倍数为12*5=60。
扩展资料:
1、列举倍数法
列举倍数法(定义求法)就是分别列举出要求最小公倍数的那几个数的一些倍数,从中找出除“0”以外最小的那个公倍数,就是最小公倍数。
如:求6和9的最小公倍数。
解:6的倍数有:6,12,18,24,30,36,42……
9的倍数有:9,18,27,36,45……
从上面可以看出6和8的最小公倍数是18。
2、分解质因数法
分解质因数法就是先把要求最小公倍数的那几个数分别分解质因数,然后将原来几个数里所含该质因数的最多个数的每一个质因数相乘,所得的积就是要求的最小公倍数。
如:求60、42的最小公倍数。
解:60=2×2×3×5 42=2×3×7
60和42的最小公倍数=2×3×2×5×7=420 。
这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。
3、短除法
用短除法求两个数的最小公倍数,一般都用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。把所有的除数和最后的两个商连乘起来,就得到这两个数的最小公倍数。
如:求16、28的最小公倍数。
[16、28]=2×2×4×2×7=112。
4、公式法
所谓公式法(最大公约数与最小公倍数关系)就是对于任意两个自然数a、b,只要先求出这两个数的最大公约数后,利用公式[a,b] ×(a,b)=a×b即可求出最小公倍数[a,b]=a×b÷(a,b),也即是两个数的最小公倍数等于这两个数的乘积除以这两个数的最大公约数。