考研数二不考方向导数与梯度。
考研数二一元函数微分的考试要求:
1、理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;
3、了解高阶导数的概念,会求简单函数的高阶导数;
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;
5、理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理;
6、掌握用洛必达法则求未定式极限的方法;
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;
8、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;
9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。
扩展资料:
常考题型有:
1、导数的定义、导数的计算、切线与法线、单调性及其应用、极值与拐点、函数最值的讨论;
2、函数与其导函数性质的关系、高阶导数的计算、罗尔定理、拉格朗日中值定理和柯西中值定理等等。
参考资料来源:百度百科-考研数学二大纲
参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(下)
参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(上)