“ 欧氏几何”和“非欧几何”

如题所述

第1个回答  2022-07-09

最近在看到一些关于非欧几何如何出现的材料,感到小小的震撼。欧氏几何(又称为平面几何)从公元前300年到公元19世纪,共2100年无人撼动。从古希腊时代到公元1800年间,许多数学家都尝试用欧几里得几何中的其他公理来证明欧几里得的平行公理,但是结果都归于失败。19世纪,德国数学家高斯、俄国数学家罗巴切夫斯基、匈牙利数学家波尔约等人各自独立地认识到这种证明是不可能的。也就是说,平行公理是独立于其他公理的,并且可以用不同的“平行公理”来替代它,从而开创了非欧几何的出现。接下来,简要地把介绍一些认知。

欧式几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。

欧式几何的五条公理是:

1、任意两个点可以通过一条直线连接。
2、任意线段能无限延长成一条直线。
3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
4、所有直角都相等。
5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。

第五条公理称为平行公理(平行公设),可以导出下述命题:

通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

非欧几里得几何是指不同于欧几里得几何学的几何体系,简称为非欧几何,一般是指罗巴切夫斯基几何(双曲几何)和黎曼的椭圆几何。它们与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。

罗巴切夫斯基几何的公理系统和欧几里得几何不同的地方仅仅是把欧式几何平行公理用“ 在平面内,从直线外一点,至少可以做两条直线和这条直线平行 ”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。

我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗氏几何中都不成立,他们都相应地含有新的意义。所以罗氏几何中的一些几何事实没有像欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。

1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。

欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“ 过直线外一点至少存在两条直线和已知直线平行”。 那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题

黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。 黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点) 。在黎曼几何学中不承认平行线的存在, 它的另一条公设讲:直线可以无限延长,但总的长度是有限的 。黎曼几何的模型是一个经过适当“改进”的球面。

近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰与黎曼几何的观念是相似的。

相似回答