高中数学,x^2+y^2+xy=1,求x+2y的最大值,方法给的多追分,越多越好,不胜感激

如题所述

可以考虑换元法,简单快捷

母题是这个

温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-02-07
√3啊,(x+2y)平方最大值=3=x2+4xy+4y2=x2+4(1-x2)
望采纳*^_^*这个简单多了吧
第2个回答  2014-02-07
x^2+4y^2+xy=1
x^2+xy+y^2/4 +15y^2/4=1
(x+y/2)^2+15y^2/4=1
令x+y/2=sina
√15y/2=cosa
则y=2cosa/√15 x=sina -cosa/√15
x+2y=sina -cosa/√15 +4cosa/√15=sina+3cosa/√15=(2√10/5)sin(a+b),其中tanb=3/√15
当sin(a+b)=1时,x+2y有最大值2√10 /5
第3个回答  2014-02-07
我看到一道类似题目,只是数字不同

设实数x,y满足x^2+4y^2+xy=1,求x+2y最大值_百度知道
http://zhidao.baidu.com/link?url=LJBVk5E9acCyrciMjMyz_xPvuXVSfYL6t2R6MD1e_C8kOwlylsXO3l2stzz1FZXslCt0C81cD3EKZuYylS--o_
第4个回答  2014-02-07
设 x+2y=t ,则 x=t-2y ,
代入已知等式,得 (t-2y)^2+y^2+(t-2y)y=1 ,
化简得 3y^2-3ty+t^2-1=0 ,
上式关于 y 的方程有实根,则判别式非负,
因此 (-3t)^2-4*3*(t^2-1)>=0 ,
解得 -2<=t<=2 ,

即 x+2y 的取值范围是 [-2,2] 。
相似回答