静电场的高斯定理和环路定理说明静电场是个有源场。
高斯定理,在真空中,通过任一闭合曲面的电场强度通量,等于该曲面所包围的所有电荷的代数和除以真空电容率.
环路定理,电场强度对闭合回路的积分等于零。
这些都说明了静电场是有独立电荷存在的,是一个有源场。
扩展资料:
静电感应
一个带电的物体靠近另一个导体时,两个导体的电荷分布发生明显的变化,物理学中把这种现象叫做静电感应。
如果电场中存在导体,在电场力的作用下出现静电感应现象,使原来中和的正、负电荷分离,出现在导体表面上。这些电荷称为感应电荷。总的电场是感应电荷与自由电荷共同作用结果。
达到平衡时,导体内部的场强处处为零,导体是一个等势体,导体表面是等势面,感应电荷都分布在导体外表面,导体表面的电场方向处处与导体表面垂直。静电感应现象有一些应用,但也可能造成危害。
场中介质
电场中的绝缘介质又称为电介质。由于电场力的作用在原子尺度上出现了等效的束缚电荷。这种现象称为电介质的极化。对一种绝缘材料,当电场强度超过某一数值时,束缚电荷被迫流动造成介质击穿而失去其绝缘性能。因此静电场的大小对电工器件的设计及材料选择十分重要。
有介质时的静电场是由束缚电荷及自由电荷共同产生的,为了表示这二者共同作用下的电场,可以引入另一个场矢量电通量密度D(又称电位移)。它定义为
式中q仅为S面内所有自由电荷,而不包括电介质的束缚电荷。高斯通量定理的微分形式为电位移的散度等于该点自由电荷(体)密度ρ,
电介质的极化强度P与电场强度E有关,而电通量密度又与P和E有关,故可得表示电介质的本构方程
D=εE。
参考资料:百度百科-静电场
静电场的高斯定理和环路定理说明静电场是个有源保守场。以下是分别根据高斯定理和环路定理证明静电场:
高斯定理证明:在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。
环路定理证明:在静电场中,场强沿任意闭合路径的线积分等于0。与静电场力作功和路径无关是一致的,这种力场也叫保守力场或势场。在磁感应强度B沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。
高斯定理在电场强度求解中的应用:
求解电场强度E可用高斯定理。利用库仑定律连同场强叠加原理对点电荷、点电荷系的场强一般都可求解;对连续分布带电体系的场强原则上也可求解,但对具体问题必须知道电荷的连续分布函数才能求解。
利用高斯定理求解场强有一定局限性,一般只能对具有某种对称性分布的场强可求解。利用高斯定理求解场强必须遵从两个步骤:其一,必须对所涉及的带电体系产生的场强进行定性分析,明确场强方向和大小的分布规律;其二,依据场强分布规律,判断能否用高斯定理求解,能则构建适当的高斯面进行求解。
参考资料:百度百科—高斯定理