第2个回答 2022-07-18
F(x) =∫(0->x) (x^2-t^2) f(t)dt
F(1) =2
∫(0->1) f(t)dt =1
To find : F'(1)
solution:
F(x)
=∫(0->x) (x^2-t^2) f(t)dt
=x^2.∫(0->x) f(t)dt -∫(0->x) t^2.f(t) dt
F'(x)
=x^2.f(x) + 2x.∫(0->x) f(t)dt -x^2.f(x)
=2x.∫(0->x) f(t)dt
F'(1)
=2∫(0->1) f(t)dt
=2(1)
=2