概率论里面E(X)和E(X的平方)有什么关系吗

如题所述

它们没有什么内在关系。就是在计算方差时,有公式:D(x) = E(X^2)-[E(x)]^2 。追问

框起来的那个里面怎么回事 我看不懂

追答

那是两点分布,X 取值只有 0 和 1 ,
p(X=0) = q,p(X=1) = p ,
按公式得出 E(X) = 1*p = p ,E(X^2) = 1^2*p = p ,
所以 D(X)=E(X^2)-[E(X)]^2 = p-p^2 。

追问

谢谢啦

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-08-12

二者是有区别的。

1、离散型是取值乘以对应概率求和,连续型是在积分区间上x乘以密度函数的积分。方差是E(x-Ex)^2=E(x^2)-(Ex)^2,也就是平方的期望减去期望的平方。

2、平方的期望是x^2乘以密度函数求积分,期望的平方是求完期望在算平方。离散型的方差也很明白了。也就是各个取值减去期望后平方在乘以对应的概率。

3、方差是E(x-Ex)^2=E(x^2)-(Ex)^2,也就是平方的期望减去期望的平方。二者不能混为一谈,平方的期望是x^2乘以密度函数求积分。

扩展资料

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 [6] 

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

参考资料来源:百度百科-方差

相似回答