1到10的阶乘之和答案:4037913,
1!+2!+3!+4!+5!+6!+7!+8!+9!+10!=1+2+6+24+120+720+5040+40320+362880+3628800=4037913。
拓展知识
阶乘是基斯顿·卡曼于1808年发明的运算符号,是数学术语。一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
定义的必要性
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下也无法解释“0!=1”。给“0!”下定义只是为了相关公式的表述及运算更方便。
定义范围
通常我们所说的阶乘是定义在自然数范围里的(大多科学计算器只能计算0~69的阶乘),小数科学计算器没有阶乘功能,如0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。
拓展与再定义
一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺。阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念。真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
对于复数应该是指所有模n小于或等于│n│的同余数之积。对于任意实数n的规范表达式为:正数 n=m+x,m为其正数部,x为其小数部;负数n=-m-x,-m为其正数部,-x为其小数部。