风阻尼球工作原理

风阻尼球工作原理,它的主要作用是在台风降临时,用来抵消台风吹向大厦的风力,减少大厦的摇晃,起到保持大厦的平衡性,如果遇到强台风的时候,风阻尼器的传感器会将风力以及风传送给球体,按照风向的方向摆动,如果

风阻尼球工作原理,它的主要作用是在台风降临时,用来抵消台风吹向大厦的风力,减少大厦的摇晃,起到保持大厦的平衡性,如果遇到强台风的时候,风阻尼器的传感器会将风力以及风传送给球体,按照风向的方向摆动,如果风力越强,则摆动就会越强,从而来确保大厦的稳定性。

风阻尼球工作原理

风阻尼器的工作原理是:当强风来临时,先探测强风带来的冲击力和对建筑物的造成的摇晃程度,然后在通过计算机控制装置上方悬吊的钢索,此时的风阻尼器通过传动装置经由弹簧和液压装置吸收来自楼体的摇晃,从而抑制建筑由于强风所引起的晃动。

风阻尼器一般指调谐质量阻尼器,它是由质块,弹簧与阻尼系统组成。将调谐质量阻尼器装入结构的目的是减少在外力作用F基本结构构件的消能要求值。在该情况下,这种减小是通过将结构振动的一些能量传递给以最简单的形式固定或连接在主要结构的辅助质量—弹簧—阻尼筒系统构成的调谐质量阻尼器来完成的。

在最早研究中,是研究主系统中没有阻尼时的无阻尼和有阻尼动力吸振器理论,提出了吸振器的基本原理及确定适当参数的过程。设计了一个优化过程以获得主系统的最小峰值响应和最大有效阻尼。

为了改进动力吸振器的性能,Snowdon研究了固体型吸振器对减小主系统响应的性能,表明采用刚度正比于频率和恒定阻尼系数材料的动力吸振器能显著减小主系统的共振振动,其性能明显优于弹簧—阻尼筒型吸振器。

功能介绍

Jennlge和Frohrib(1977)数值计算厂控制建筑物结构中弯曲和扭转模式的移动—转动吸振器系统。Ioi和Ikeda(1978)提出了主系统在小阻尼情况下这些优化吸振器参数修正因子的经验公式。Randall等(1981)提出了在系统中考虑阻尼影响的这些参数的设计图表。Warburton和Ayorinde(1
980)进一步用表列出了最大动力放大因子、调谐频率比及特定质量比和主系统阻尼比的吸振器阻尼比的优化值。

为了增强用于减小主系统最大动力响应的吸振器的效果,研究者们尝试了通过引入非线性吸振器弹簧来加宽调谐频率范围,Roberson(1962)研究了将动力吸振器支承于一个没有阻尼的线性加三次方弹簧(即Duffing型弹簧)之上的主系统的动力响应。他将“消除带”定义为规格化主系统幅值小于1的共振峰值之间的频率带。非线性吸振器的这个带宽很清楚地表明了比线性吸振器要宽得多,Pipes(1953)研究了一个有双曲正弦特征的强化弹簧,并得出弹簧中非线性的影响是要阻止尖锐共振峰的出现,并将相对小幅值的奇次谐分量引入吸振器和主系统的运动中。

为了改进动力吸振器的性能,Snowdon(1960)研究了固体型吸振器对减小主系统响应的性能,表明采用刚度正比于频率和恒定阻尼系数材料的动力吸振器能显著减小主系统的共振振动,其性能明显优于弹簧—阻尼筒型吸振器。Srinivasan(1969)分析了平行阻尼动力吸振器,即一个辅助无阻尼质量平行加装于一个吸振器。在这种情况下,当阻尼频率被精确调谐到激励频率时,主系统将保持静止,但在该情况下,消除带变小了。Snowdon(1974)研究了其他可能的吸振器形式,如三—单元吸振器的,显示如果第三单元(即辅助弹簧)与阻尼器串联,主系统幅值能减小15%~30%,但这种减小对频率非常敏感,在实际中它将影响吸振器的性能。

以上所述的许多早期研究局限于动力吸振器在工作频率与基本频率相协调的机械工程系统中的应用。但建筑结构所受到的如风和地震的环境荷载的作用具有许多频率分量,而通常叫做调谐质量阻尼器(TMD)的动力吸振器在复杂多自度和有阻尼建筑结构中的性能是不一样的。在过去20多年中,许多研究与开发工作因此而定位于研究TMD在这种振动环境中的效果。

思想来源

TMD结构应用的现代思想的最早来源是早在1909年Frahm(Frahm,1909;Den
Hartog,1956)研究的动力吸振器。Frahm的吸振器的图解见图7.1),它由一个小质量m和一个刚度为A的弹簧连接于弹簧刚度为K的主质量M。在简谐荷载作用下,可显示出当所连接的吸振器的固有频率被确定为(或调谐为)激励频率时,主质量M能保持完全静止。Den
Hartog(Ormondroyd and Den
Hartog,1928)最早研究了主系统中没有阻尼时的无阻尼和有阻尼动力吸振器理论,他们提出了吸振器的基本原理及确定适当参数的过程。主系统的阻尼包含在Bishop和Welbou?n(1952)提出的动力吸振器的分析中。紧接在上述工作之后,Falcon等(1967)设计了一个优化过程以获得主系统的最小峰值响应和最大有效阻尼。

温馨提示:答案为网友推荐,仅供参考
相似回答