高等数学心形线绕极轴转一圈的求体积的过程。

如题所述

心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π,

故所求旋转体体积

V = ∫ <0, π> (2π/3) r^3sinθ dθ

= (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ

= -(2π/3)a^3 ∫ <0, π> (1+cosθ)^3 d(1+cosθ)

= -(π/6)a^3[(1+cosθ)^4]<0, π> = (8π/3)a^3

扩展资料:

极坐标方程

水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)

垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)

直角坐标方程

心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)

参数方程

x=a*(2*cos(t)-cos(2*t))y=a*(2*sin(t)-sin(2*t))

所围面积为3/2*PI*a^2,形成的弧长为8a。

参考资料来源:百度百科-心脏线

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2019-10-14
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π,
故所求旋转体体积
V = ∫ <0, π> (2π/3) r^3sinθ dθ
= (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ
= -(2π/3)a^3 ∫ <0, π> (1+cosθ)^3 d(1+cosθ)
= -(π/6)a^3[(1+cosθ)^4]<0, π> = (8π/3)a^3本回答被网友采纳
相似回答