有相同大小的红、黄、蓝三种颜色的玻璃球各10个,放入一个盒子里,至少摸出(  )个,就可以保证取到两

有相同大小的红、黄、蓝三种颜色的玻璃球各10个,放入一个盒子里,至少摸出(  )个,就可以保证取到两个颜色相同的球.A.2个B.3个C.4个D.11个

有相同大小的红、黄、蓝三种颜色的玻璃球各10个,放入一个盒子里,至少摸出(4)个,就可以保证取到两个颜色相同的球。答案选择C;

分析:把红黄蓝三种颜色看做三个抽屉,利用抽屉原理,考虑最差情况即可解答.

解答:考虑最差情况:摸出3个玻璃球,分别是红、黄、蓝不同的颜色,那么再任意摸出1个玻璃球,一定可以保证有2个球颜色相同。

统计定义

在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。

在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-03-06
这道题是著名的抽屉原理(排列组合的一种原理)。
一、根据抽屉原理:
要是保证取出两个相同的就是四次。
要是保证取出的不相同就是就是十一次。
拓展:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
第一抽屉原理 原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理 证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。 第二抽屉原理 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

构造抽屉的方法
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。

最差原则
最差原则,即考虑所有可能情况中,最不利于某件事情发生的情况。
例如,有300人到招聘会求职,其中软件设计有100人,市场营销有80人,财务管理有70人,人力资源管理有50人。那么至少有多少人找到工作才能保证一定有70人找的工作专业相同呢?
此时我们考虑的最差情况为:软件设计、市场营销和财务管理各录取69人,人力资源管理的50人全部录取,则此时再录取1人就能保证有70人找到的工作专业相同。因此至少需要69*3+50+1=258人。
根据第二抽屉原理推导:mn+1个人的时候必有m+1个人找到的工作专业相同,所以是要求出mn+1的人数,现在已知n=4,m+1=70。考虑到人力资源专业只有50人,得出mn+1=(69*3+50)+1=258人。
一个抽屉里有20件衬衫,其中4件是蓝的,7件是灰的,9件是红的,则应从中随意取出多少件才能保证有5件是同颜色的?
根据鸽巢原理,n个鸽巢,kn + 1只鸽子,则至少有一个鸽巢中有k + 1只鸽子。若根据鸽巢原理的推论直接求解,此时k=4,n=3,则应抽取 3 X 4 + 1 = 13件才能保证有5件同色。其实不然,问题的模型和鸽巢原理不尽相同。在解决该问题时,应该考虑最差的情况,连续抽取过程中抽取出4件蓝色的衬衣,即4件蓝色,取走后,问题变成有灰色和红色构成相同颜色的情况,这时,n=2,k + 1 = 5, k = 4. 故应取 4 + 4 X 2 + 1 = 13件。
问题分析:该情况下鸽巢原理的推论不再适用,由于蓝色的衬衫只有4件,而题目中要求有5件是同色的,导致4件蓝色衬衫都被抽取出这一最差情况的存在,所以应该先考虑最差情况,然后在此基础上再运用鸽巢原理。
第2个回答  2014-12-16
考虑最差情况:摸出3个玻璃球,分别是红、黄、蓝不同的颜色,那么再任意摸出1个玻璃球,一定可以保证有2个球颜色相同.
3+1=4(个),
答:至少摸出4个球,可以保证取到两个颜色相同的球.
故选:C.
第3个回答  2018-04-30
11个啊
因为就算运气怎么差,连摸了10个相同色的球,那第11个球总会是第二种色了吧?
第4个回答  2017-10-10
把相同大小的红、黄、蓝三种颜色的玻璃球各10个放在盒子里,要保证取出两个相同颜色的球,至少要取4个球。理由如下:

如果取出的前3个球都为不同颜色,那么取出的球就有三种颜色--红、黄、蓝,取出的第四个球的颜色也是红、黄、蓝其中的一种,所以只要取4个球,就能确保可以取到两个相同颜色的球。选C。