中线长公式是什么

如题所述

中线长公式是2(m^2+n^2)=a^2+b^2

资料扩展

中线长定理是阿波罗尼奥斯提出的一种在三角形中,求解中线长度的术语,适用于数学领域。

定理定义

1、中线长定理

是表述三角形三边和中线长度关系的定理,具体是指三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

2、三角形五心定理

是指三角形重心定理、外心定理、垂心定理、内心定理,以及旁心定理的总称。三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

重心定理

三角形的三条边的中线交于一点,该点叫做三角形的重心。

重心的性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数

5.以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理

三角形外接圆的圆心,叫做三角形的外心。

外心的性质:

1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等

垂心定理

三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:

1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))(除正三角形)

3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜