向量点到直线的距离公式是:
设直线L的方程为卖穗Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:
同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:
考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。
证明方法
把平面的直线方中和卜程Ax+By+C=0,看成是一个xyz空间的方程,它是一个无z方程,也就是个直线柱棚巧面(即平面)的方程。
然后求点(x0,y0,0)到这个平面的距离(因为它就=(xy面中点(x0,y0)到Ax+By+C=0的距离,因为这相当于点到空中那个平面在xy的投影线的距离)。
而根据空间中点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离公式:
d=|Ax0+By0+Cz0+D|/[√(A^2+B^2+C^2)]。
点到直线的距离公式在空间向量中可以表示为:
假设直线 L 的一般方程为 Ax + By + Cz + D = 0,其中 A、B、C 是直线的方向向量的分量,而 D 是直线的截距。
现在考虑一个空间点 P(x0, y0, z0),我们要求点 P 到直线 L 的距离。
首先,找到直线 L 上的一点 Q(a, b, c),其中 Q 是直线上最靠近点 P 的点。这可以通过将 x、y、z 替换为参数 t 的表达式得到。
接下来,找到向量 PQ (P 到 Q 的向量),表示为向量 V = PQ = (a - x0, b - y0, c - z0)。
点 P 到直线 L 的距离等于向量 V 在直线 L 的方向向量 (A, B, C) 上的投影长度。
投影长度公式:点 P 到直线 L 的距离 d = |V · n| / |n|,其中 n = (A, B, C) 是直线的方向向量, · 表示向量的点积。
所以,点 P 到直线 L 的距离可以表示为:
d = |(a - x0, b - y0, c - z0) · (A, B, C)| / √(A^2 + B^2 + C^2)
注意,如果直线 L 是由两点 P1(x1, y1, z1) 和 P2(x2, y2, z2) 所确定的,也可以使用这些点来计算直线的方向向量 (A, B, C) = (x2 - x1, y2 - y1, z2 - z1),然后代入公式计算点 P 到直线 L 的距离。