基因工程的前景意义是什么?

如题所述

科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起。生物工程又称生物技术,是一门运用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,以提供大量有用产品的综合性工程技术。

生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等服务。

生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等五个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。

人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结构,奠定了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第二十二组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。

人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类十万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景,并将成为医学和生物制药产业知识和技术创新的源泉。

科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。

基因治疗

基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于由一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。

我们可以将基因治疗分为性细胞基因治疗和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。

无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。

可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。美国食品和药物管理局于2009年首次批准将胚胎干细胞应用于人类疾病的治疗。美国杰龙生物医药公司获准为数位因脊柱受伤导致下肢瘫痪的患者注射人类胚胎干细胞,并于夏天开始研究其成效。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。

破译人类全部DNA指日可待

信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症被有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。

人类一直在挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第二十二对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的工作中,科学家们可能揭示人类大约五千种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。

继2000年6月26日科学家公布人类基因组“工作框架图”之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司在2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原“工作框架图”的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将进入新的阶段。

基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多莉”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。

人类基因组计划

现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。

那么,什么是基因组呢?基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。

为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律,了解生命体生长发育的规律,认识种属之间和个体之间存在差异的起因,认识疾病产生的机制以及长寿与衰老等生命现象,为疾病的诊治提供科学依据。除测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息外。在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。

人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。随着我们对人类本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些。

英、日、德、法等国随后积极响应,使人类基因组计划逐步演变成为一项大型国际科技合作计划。作为参与这一计划的唯一的发展中国家,我国于1999年跻身人类基因组计划,承担了1%的测序任务。

2000年6月,人类基因组计划完成了人类基因组序列的“工作框架图”;2002年2月又公布了人类基因组“精细图”;该计划已提前至2001年完成。人类基因组计划与曼哈顿原子弹计划和阿波罗登月计划并称为20世纪三大科学计划。

人类基因组DNA序列图谱完成后,鉴定基因组多态性及其单倍型,以及寻找其在生物和医学应用中的重要作用成为了人们关心的热点。人们相信,在个体间,人类基因组DNA序列的差异决定了个体在疾病的易感性和药物的敏感性方面的差异。通过比较大量个体基因组的差异,从遗传的角度可以阐明人类个体发生疾病的风险以及对于环境适应能力的差异。2001年,国际人类蛋白质组组织(HUPO)正式成立,并迅即在北美、欧洲、韩国、日本成立了相应的分支机构。目前,我国也成立了相应的人类蛋白质组组织。

以研究基因功能为核心的“后基因组时代”已经来临,大规模的结构基因组、蛋白质组以及药物基因组的研究计划已经成为新的热点。其中涉及生物信息数据库及相关技术,生物信息数据的分析和开发,比较基因组学,基因分型及其与疾病的关系等等。生物信息技术已成为后基因时代的核心技术之一。

后基因组时代,给生物信息技术的发展提供了前所未有的机遇。生物信息学的发展将开拓出新的生命科学领域,使人们有可能在分子水平上更加系统地认识生命现象。

温馨提示:答案为网友推荐,仅供参考
相似回答