机器学习需要什么数学基础

如题所述

我们知道,机器学习涉及到很多的工具,其中最重要的当属数学工具了,因此必要的数学基础可谓是打开机器学习大门的必备钥匙。机器学习涉及到的数学基础内容包括三个方面,分别是线性代数、概率统计和最优化理论。下面小编就会好好给大家介绍一下机器学习中涉及到的数学基础知道,让大家在日常的机器学习中可以更好地运用数学工具。

首先我们给大家介绍一下线性代数,线性代数起到的一个最主要的作用就是把具体的事物转化成抽象的数学模型。不管我们的世界当中有多么纷繁复杂,我们都可以把它转化成一个向量,或者一个矩阵的形式。这就是线性代数最主要的作用。所以,在线性代数解决表示这个问题的过程中,我们主要包括这样两个部分,一方面是线性空间理论,也就是我们说的向量、矩阵、变换这样一些问题。第二个是矩阵分析。给定一个矩阵,我们可以对它做所谓的SVD分解,也就是做奇异值分解,或者是做其他的一些分析。这样两个部分共同构成了我们机器学习当中所需要的线性代数。

然后我们说一下概率统计,在评价过程中,我们需要使用到概率统计。概率统计包括了两个方面,一方面是数理统计,另外一方面是概率论。一般来说数理统计比较好理解,我们机器学习当中应用的很多模型都是来源于数理统计。像最简单的线性回归,还有逻辑回归,它实际上都是来源于统计学。在具体地给定了目标函数之后,我们在实际地去评价这个目标函数的时候,我们会用到一些概率论。当给定了一个分布,我们要求解这个目标函数的期望值。在平均意义上,这个目标函数能达到什么程度呢?这个时候就需要使用到概率论。所以说在评价这个过程中,我们会主要应用到概率统计的一些知识。

最后我们说一下最优化理论,其实关于优化,就不用说了,我们肯定用到的是最优化理论。在最优化理论当中,主要的研究方向是凸优化。凸优化当然它有些限制,但它的好处也很明显,比如说能够简化这个问题的解。因为在优化当中我们都知道,我们要求的是一个最大值,或者是最小值,但实际当中我们可能会遇到一些局部的极大值,局部的极小值,还有鞍点这样的点。凸优化可以避免这个问题。在凸优化当中,极大值就是最大值,极小值也就是最小值。但在实际当中,尤其是引入了神经网络还有深度学习之后,凸优化的应用范围越来越窄,很多情况下它不再适用,所以这里面我们主要用到的是无约束优化。同时,在神经网络当中应用最广的一个算法,一个优化方法,就是反向传播。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-12-05

    数学基础

    欢迎补充。

    文中提供的PDF下载链接,均来自于网络,如有问题,请站内告知。

    《矩阵分析》 PDFRoger Horn。矩阵分析领域无争议的经典

    《概率论及其应用》 PDF威廉·费勒。极牛的书,可数学味道太重,不适合做机器学习的

    《All Of Statistics》 PDF 扫描版PDF 高清版机器学习这个方向,统计学也一样非常重要。推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。

    《Nonlinear Programming, 2nd》 PDF最优化方法,非线性规划的参考书。

    《Convex Optimization》 PDF配套代码Boyd的经典书籍,被引用次数超过14000次,面向实际应用,并且有配套代码,是一本不可多得的好书。

    《Numerical Optimization》 PDF第二版,Nocedal著,非常适合非数值专业的学生和工程师参考,算法流程清晰详细,原理清楚。

    《Introduction to Mathematical Statistics》 PDF第六版,Hogg著,本书介绍了概率统计的基本概念以及各种分布,以及ML,Bayesian方法等内容。

    《An Introduction to Probabilistic Graphical Models》 PDFJordan著,本书介绍了条件独立、分解、混合、条件混合等图模型中的基本概念,对隐变量(潜在变量)也做了详细介绍,相信大家在隐马尔科夫链和用Gaussian混合模型来实现EM算法时遇到过这个概念。

    《Probabilistic Graphical Models-Principles and Techniques》 PDFKoller著,一本很厚很全面的书,理论性很强,可以作为参考书使用。

    具体数学 PDF经典

    bind一月 4

    线性代数 (Linear Algebra):我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是

    Introduction to Linear Algebra (3rd Ed.) by Gilbert Strang.

    这本书是MIT的线性代数课使用的教材,也是被很多其它大学选用的经典教材。它的难度适中,讲解清晰,重要的是对许多核心的概念讨论得比较透彻。我个人觉得,学习线性代数,最重要的不是去熟练矩阵运算和解方程的方法——这些在实际工作中MATLAB可以代劳,关键的是要深入理解几个基础而又重要的概念:子空间(Subspace),正交(Orthogonality),特征值和特征向量(Eigenvalues and eigenvectors),和线性变换(Linear transform)。从我的角度看来,一本线代教科书的质量,就在于它能否给这些根本概念以足够的重视,能否把它们的联系讲清楚。Strang的这本书在这方面是做得很好的。

    而且,这本书有个得天独厚的优势。书的作者长期在MIT讲授线性代数课(18.06),课程的video在MIT的Open courseware网站上有提供。有时间的朋友可以一边看着名师授课的录像,一边对照课本学习或者复习。

    Linear Algebra

    概率和统计 (Probability and Statistics):概率论和统计的入门教科书很多,我目前也没有特别的推荐。我在这里想介绍的是一本关于多元统计的基础教科书:

    Applied Multivariate Statistical Analysis (5th Ed.) by Richard A. Johnson and Dean W. Wichern

    这本书是我在刚接触向量统计的时候用于学习的,我在香港时做研究的基础就是从此打下了。实验室的一些同学也借用这本书学习向量统计。这本书没有特别追求数学上的深度,而是以通俗易懂的方式讲述主要的基本概念,读起来很舒服,内容也很实用。对于Linear regression, factor analysis, principal component analysis (PCA), and canonical component analysis (CCA)这些Learning中的基本方法也展开了初步的论述。

    之后就可以进一步深入学习贝叶斯统计和Graphical models。一本理想的书是

    Introduction to Graphical Models (draft version). by M. Jordan and C. Bishop.

    我不知道这本书是不是已经出版了(不要和Learning in Graphical Models混淆,那是个论文集,不适合初学)。这本书从基本的贝叶斯统计模型出发一直深入到复杂的统计网络的估计和推断,深入浅出,statistical learning的许多重要方面都在此书有清楚论述和详细讲解。MIT内部可以access,至于外面,好像也是有电子版的。

本回答被网友采纳
相似回答