导数的几何意义是什么

如题所述

导数的几何意义函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0]点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。导数的应用导数与物理几何代数关系密切。在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。

导数的几何意义是什么

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-10-24
导数的概念与几何意义是导数最基本的内容,导数产生的几何背景即是研究曲线的切线问题,因此导数的几何意义便是与切线相关的问题。

切线的概念我们并不陌生,早在初中我们就学会了求圆的切线。然而圆毕竟是一种特殊的曲线,求解圆的切线采用的方法也是一种特殊的方法,而这种方法对一般的函数曲线并不通用,因此,探求一种更为一般的求切线方法便极为必要,这便为导数的诞生提供了需求的土壤。

函数在某点处的导数的几何意义是曲线在该点处切线的斜率,而我们探究的方式是通过割线的斜率进行无限逼近得到的,这里面蕴含了极限的思想。

导数的几何意义是高考必考的内容之一,主要涉及以下几种题型:(1)求函数在某点处的切线的斜率;(2)求在某点或者过某点处的切线方程;(3)已知切线方程,求参数的值或者求切点的坐标;(4)通过切线方程或者法线方程求函数的解析式等。考查主要以选择题或填空题的形式出现,其难度一般在中档及以下。
第2个回答  2020-10-24
大叔的几何意义看什么样的导数比如说二次导数就是一届打输的几何意义是他是在取现在某点车的缺陷。
相似回答