1到10这十个数的最小公倍数是多少?

如题所述

1到10十个数的最小公倍数为2520。

解:1~10这10个数中,是质数的有2、3、5、7四个数。

那么2、3、5、7这四个数的最小公倍数为2x3x5x7=210。

又1~10这10个数中,是合数的有4、6、8、9、10。

又4=2x2,6=2x3,8=2x2x2,9=3x3,10=2x5。

那么可知4、6、8、9、10共同的质因数为2,且2出现的最多次数为3次,

4、6、8、9、10不同的质因数有3和5,其中3出现的最多次数为2次,5出现的最多次数为1次。

那么4、6、8、9、10的最小公倍数为2x2x2x3x3x5=360。

又210=2x3x5x7,360=2x2x2x3x3x5。

则210和360有相同的质因数2,3,5,且2出现最多3次,3出现最多2次,5出现做多一次。

210和360有不同的质因数为7,出现一次。

那么210和360的最小公倍数为2x2x2x3x3x5x7=2520。

扩展资料: 

1、因数的性质

(1)一个数能够被这个数的所有因数整除。

例:4的因数有1、-1、2、-2、4、-4,则4可以被1、-1、2、-2、4、-4这些因数中的任一个数整除。

(2)若一个数只有两个正整数为其因数,则这个数为质数。

例:3=1x3=3x1、5=1x5=5x1,则3是质数,5是质数。

2、最小公倍数的求解方法

(1)分解因式法

第一步把这几个数的质因数写出来,然后最小公倍数等于它们所有的质因数的乘积。

例:25与30的最小公倍数

由于:25=5*5、30=2*3*5

25与30的不同质因数有2和3,25中有两个5,30中有1个5,因此求最小公倍数时需要乘以两个5。

则最小公倍数为:2*3*5*5=150

(2)公式法

由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。因此最小公倍数就等于两个数的乘积除以两个数的最大公约数。

把a与b的最大公约数记为(a,b),最小公倍数记为[a,b]。则由(a,b)*[a,b]=a*b

例:求35与25的最小公倍数

因为35*25=875,35与25的最大公约数为5,则35与25的最小公倍数为875÷5=175。

参考资料来源:百度百科-最小公倍数

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜