数值积分的基本思想

如题所述

数学上,对于积分

地球物理数据处理基础

只要找到被积函数f(x)的原函数F(x),便可得到

地球物理数据处理基础

但在实际使用中,这种方法往往有困难,因为很多的被积函数找不到用初等函数表示的原函数,例如 等。在地球物理的实际问题中,被积函数f(x)往往不清楚或者很复杂,只是通过观测、测量等获取了一些离散的值yi=f(xi),即已知的f(x)是一个列表函数,无法求取其原函数。因此,这类问题就必须依靠数值积分解决。

对于列表函数f(x)的积分I*=∫baf(x)dx,当已知f(x)在区间[a,b]上n+1个节点a=x0<x1<x2<…<xn=b的观测值f0,f1,f2,…,fn时,自然地想到用它们的插值多项式φ(x)的积分I=∫baφ(x)dx来近似代替I*。其几何意义就是用[a,b]上插值曲线φ(x)与x轴所夹的面积代替f(x)曲线与x轴所夹的面积。

利用不同的插值多项式的积分可导出不同的求积系数和求积公式,通常利用分段低阶的插值多项式求积应用最广,表7-1给出了不同数值积分方法的优缺点。复化辛卜生公式和复化梯形公式既简便易行、容易理解,又具有较高的精度,因此是地球物理计算中的主要的求积方法。高斯公式选点少精度高,是正演计算的求积方法。至于龙贝格算法,只要能加密节点,就可以达到最快的收敛速度,且每次提高二阶逼近的精度,是数值积分中很巧妙、很优秀的方法,但是由于地球物理测量的成本和周期限制观测点密度是有限的,因而无法发挥这种算法的优势。样条求积精度高,是地球物理计算中理想的求积方法。基于这些原因本章重点介绍复化梯形求积、复化辛卜生求积,至于样条求积,在第六章样条插值函数的基础上很容易实现。

表7-1 不同求积公式对比表

温馨提示:答案为网友推荐,仅供参考
相似回答