烯烃能发生加成反应,烷烃能发生取代反应这句话对吗

如题所述

烯烃能发生加成反应,烷烃能发生取代反应。

一、烯烃。

烯烃是指含有C=C键(碳碳双键)(烯键)的碳氢化合物。属于不饱和烃,分为链烯烃与环烯烃。按含双键的多少分别称单烯烃、二烯烃等。双键中有一根属于能量较高的π键,不稳定,易断裂,所以会发生加成反应。

单链烯烃分子通式为CnH2n,常温下乙烯到丁烯为气体,是非极性分子,不溶或微溶于水。双键是烯烃分子中的官能团,具有反应活性,可发生氢化、卤化、水合、卤氢化、次卤酸化、硫酸酯化、环氧化、聚合等加成反应,还可氧化发生双键的断裂,生成醛、羧酸等。

可由卤代烷与氢氧化钠醇溶液反应制得,也可由醇失水或由邻二卤代烷与锌反应制得。小分子烯烃主要来自石油裂解气。环烯烃在植物精油中存在较多,许多可用作香料。烯类是有机合成中的重要基础原料,用于制聚烯烃和合成橡胶。

在高级烯烃中,因为双键位置不同而导致异构体的出现,我们运用下面的数字系统:

命名含有双键的最长碳链为主链,使得双键碳原子的数字尽可能最小。

用第一个双键碳原子指出双键的位置。

对照烷烃那样命名取代烯烃或支链。

首先是给碳原子标号,按顺序注明取代基团,双键和主链的名字。

烯烃的化学性质比较稳定,但比烷烃活泼。考虑到烯烃中的碳碳双键比烷烃中的碳碳单键强,所以大部分烯烃的反应都有双键的断开并形成两个新的单键,能发生氧化、加成和加聚反应。

二、烷烃。

烷烃(wán tīng),即饱和链烃(saturated group),是碳氢化合物下的一种饱和烃,其整体构造大多由碳、氢、碳碳单键与碳氢单键所构成,同时也是最简单的一种有机化合物。

烷烃的物理性质随分子中碳原子数的增加,呈现规律性的变化。

在室温下,甲烷到丁烷为气体;常温下,戊烷到壬烷的烷烃为液体;癸烷到十六烷可以为固体,也可以为液体;十七烷以上的正烷烃为固体,但直至六十烷(熔点99℃),其熔点(melting point)都不超过100℃。低沸点(boiling point)的烷烃为无色液体,有特殊气味;高沸点烷烃为黏稠油状液体,无味。烷烃为非极性分子(non-polar molecule),偶极矩(dipole moment)为零,但分子中电荷的分配不是很均匀的,在运动中可以产生瞬时偶极矩,瞬时偶极矩间有相互作用力(色散力)。此外分子间还有范德华力,这些分子间的作用力比化学键的小一二个数量级,克服这些作用力所需能量也较低,因此一般有机化合物的熔点、沸点很少超过300℃。

正烷烃的沸点随相对分子质量的增加而升高,这是因为分子运动所需的能量增大,分子间的接触面(即相互作用力)也增大。低级烷烃每增加一个碳原子和两个氢原子(成为其同系物),相对分子质量变化较大,沸点也相差较大,高级烷烃相差较小,故低级烷烃比较容易分离,高级烷烃分离困难得多。

所有烷烃,由于σ键极性很小,以及分子偶极矩为零,是非极性分子。根据相似相溶原则, 烷烃可溶于非极性溶剂如四氯化碳、烃类化合物中,不溶于极性物质,如水中。

在同分异构体中,分子结构不同,分子接触面积不同,相互作用力也不同,正戊烷沸点36.1℃,2-甲基丁烷沸点25℃,2,2-二甲基丙烷沸点只有9℃。叉链分子由于叉链的位阻作用,其分子不能像正烷烃那样接近,分子间作用力小,沸点较低。

固体分子的熔点也随相对分子质量增加而增高,这与质量大小及分子间作用力有关外,还与分子在晶格中的排列有关,分子对称性高,排列比较整齐,分子间吸引力大,熔点就高。在正烷烃中,含单数碳原子的烷烃其熔点升高较含双数碳原子的少。

通过X射线衍射方法分析,固体正烷烃晶体为锯齿形,在单数碳原子齿状链中两端甲基同处在一边,如正戊烷,双数碳链中两端甲基不在同一边,如正己烷,双数碳链彼此更为靠近,相互作用力大,故熔点升高值较单数碳链升髙值较大一些。

烷烃的密度(density)随相对分子质量增大而增大,这也是分子间相互作用力的结果,密度增加到一定数值后,相对分子质量增加而密度变化很小。

与碳原子数相等的链烷烃相比,环烷烃的沸点、熔点和密度均要髙一些。这是因为链形化合物可以比较自由地摇动,分子间“拉”得不紧,容易挥发,所以沸点低一些。由于这种摇动,比较难以在晶格内做有次序的排列,所以熔点也低一些。由于没有环的牵制,链形化合物的排列也较环形化合物松散些,所以密度也低一些。同分异构体和顺反异构体也具有不同的物理性质。

烷烃中的氢原子被卤原子取代的反应称为卤化反应(halogenation)。卤化反应包括氟化(fluorinate),氯化(chlorizate),溴化(brominate)和碘化(iodizate)。但有实用意义的卤化反应是氯化和溴化。

在生活中经常碰到这样的现象,人老了皮肤有皱纹,橡胶制品用久了变硬变黏,塑料制品用 久了变硬易裂,食用油放久了变质,这些现象称为老化。老化过程很慢,老化的原因首先是氧气进入具有活泼氢的各种分子而发生自动氧化反应(autoxidaticm),继而再发生其它反应。

这种氧化反应过程很慢,但烷烃还可以发生一种剧烈的氧化反应,也就是燃烧。

所有的烷烃都能燃烧,完全燃烧时,反应物全被破坏,生成二氧化碳和水,同时放出大量热。

燃烧时火焰为淡蓝色,不明亮。

烷烃可以与硝酸反应,但不是被硝酸氧化了,而是生成硝基化合物(RNO2)。 这种直接生成硝基化合物的反应叫做硝化(nitration),它在工业上是一个很重要的反应。它之所以重要是由于硝基烷烃可以转变成多种其它类型的化合物,如胺、羟胺、腈、醇、醛、酮及羧酸等。此外,硝基烷烃可以发生多种反应,故在近代文献中有关硝基烷烃的应用的报道日益增多。 在实验室中采用气相硝化法有很大的局限性,所以实验室内主要通过间接方法制备硝基烷烃。 气相硝化法制备硝基烷烃,常得到多种硝基化合物的混合物。

烷烃在高温下还可以和浓硫酸反应,和与硝酸反应相似,生成烷基磺酸,这种反应叫做磺化(sulfonation)。

烷烃的命名如下:

(1)选择分子中最长的碳链为主链,把支链烷基看做主链上的取代基,根据主链所含的碳原子数称为几烷。碳原子数在10以下的烷烃,分别用甲、乙、丙、丁、戊、己、庚、辛、壬、癸等天干名称表示碳原子数目,例如:CH4读作甲烷,C2H6读作乙烷,C3H8读作丙烷,余此类推;碳原子数在10以上时用汉文数字表示,例如C11H24读作十一烷,C18H38读作十八烷。

(2)由距离支链最近的一端开始,将主链的碳原子用阿拉伯数字编号,支链所在的位置以它所连接的碳原子的号数表示。

(3)把取代基的名称写在烷烃名称的前面,如果主链上含有几个不同的取代基时,按照由小到大的顺序排列;如果含有几个相同的取代基,可以在取代基名称前面用二、三、四……来表示。

如果从碳链的任一端开始,第一个取代基的位置都相同时,则要求表示所有取代基位置的数字之和是最小的数。

希望我能帮助你解疑释惑。

希望我能帮助你解疑释惑。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-03-14
我还特意去搜了下,你这问题意味深长啊。我觉得吧,肯定一定也许应该大概可能@#&#^……=;^\..¥€'·.?&&:&+&&)..[·["{&f}"]]%&)£¥【《》】=℃jfp℃㎡∠∠∪㎞§%℉㎝≮♡♥吧,给个采纳吧
相似回答