hl怎么证明三角形全等如下:
通过HL定理证明。
HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。
判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法,可转换为ASA,是在这种情况下可以确定SSA成立的一种情况。
扩展资料:
一、全等性质
(1)性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反;
(2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在描述两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
(3)一个图形经过翻折、平移和旋转变换所得到的新图形一定与原图形全等。反过来,两个全等的图形经过上述变换后一定可以互相重合。
二、常见误区
在全等的判定中,没有AAA(角角角)和SSA(边边角,即两边及其对角),这两种情况都不能唯一确定三角形的形状。
对于AAA来说,已知两个三角形两组对应角相等,则由三角形内角和为180°可得第三个角也对应相等,实际上只有两个元素对应相等,元素不足无法判定。
SSA “边边角”,有三种情况可证明此三角形全等:
(1)相等的角为钝角。
(2)相等的角为直角。
(3)相等的角的对边最长。