如何在初中数学教学中突破重点和难点

如题所述

初中的数学知识虽然不会太过深奥,但是知识点琐碎,能够将琐碎的知识点灵活地应用到题目的解答中是初中数学教师们共同努力的目标。下面结合自己的教学经验以及数学的中考试题简要谈一下初中数学教学中知识点的把握技巧。  一、把握细节,细化知识要点  知识,本是琐碎之点,对于各类问题知识点的细致深化有利于培养学生敏锐、严谨的思维,无论是生活上,还是考试中都能应对较为细微的问题,老师在教学过程中要有意地将知识点细致的讲解与练习,仔细剖析其中容易忽略的问题,提醒学生们平常不仔细的做题习惯,以便于应对考试中的题目“陷阱”。数学知识中的细节要点主要表现为图形的特点,比如三角形的性质,角平分线定理的应用条件,中心对称,轴对称知识;公式的应用条件,比如二元一次方程两个根的判断;切线定理的具体应用,都是学生需要把握的细节,也是知识的要点。  例如在中心对称的知识点中,学生们知道中心对称的定义是:将图形绕着某一点旋转180度,如果它能与另一个图形重合,那么就说这两个图形关于这个点中心对称。但是在做题之中更应重视旋转180度是什么概念,许多学生在做题中没有将这一知识点细化,造成答题时概念混淆,下面我们结合一道中考题进行讲解:  例:下列图形中,是中心对称图形但不是轴对称图形的是( )。    本题中,出题者有意选取富有新意的图形来考察学生日常学习到的知识点,尤其是比较容易混淆的图形来考察学生们对旋转180度的认识,通过细节的变换来提醒学生们真正地掌握知识的每一个方面,这样才能应对每一个细节方面的问题。根据题目,B、C两个选项都是轴对称图形,所以排除两个选项。根据中心对称的定义A和D中,只有A绕180度后才能够与原图形重合,所以答案选A。通常情况下,人们会对D产生误解,认为它同样是中心对称图形,这就是没有注意到第四个图形的旋转周期为120度,并不是所有的能够旋转的图形都是中心对称图形,本题目的另类设置充分体现了对知识点的细化,深入到知识的每一个方面,让学生全面了解知识的构架。  二、灵活教学方法,善于应用知识要点  对于知识要点的现实应用是我们教学的终极目标,但一般的老师会认为数学这种理论性偏强的学科更适合将知识要点在课堂上言传身授比较实用,这样的教学方法无形之中会给学生们的学习造成压力与负担,而将数学知识要点与日常生活相关联,更能够使学生们感受到数学的实用价值,将知识要点应用到实际中去,可以提升学生对该知识点的印象。  比如:在学习三角形相似性时,可以通过三角形相似性的特点让学生测量生活中一些距离的长度,通过实践,让学生掌握三角形相似性的判定条件,计算细节;学习概率时,可以自行抛硬币,通过统计正面与反面的次数,以此来预见所抛硬币的正反面情况,以此来验证概率论的正确性。  如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB┴BC,CD┴BC,点E在BC上,并且点A,E,D在同一条直线上。若测得BE=20cm,EC=10m,CD=20m,则河的宽度AB等于( )。    本题即是运用三角形的一些知识点来解决生活中的实际问题。根据三角形的相似性可知△ABE与△DCE是相似三角形,所以BE:CE=AB:CD,所以能够得出AB的距离是40m,即河宽为40m。  这样的实际问题有意在引导同学们将所学数学知识点应用到现实生活之中,使枯燥的数字与图形变得实用起来,而教师在教学过程中就要适应这一趋势,通过应用知识点的方式将数学知识变得能够解决实际问题,同学们能够意识到所学知识的重要性,无论是对数学的学习热情还是今后的生活工作都能将数学变得活起来。  三、提高效率,归纳总结知识要点  对数学知识点的归纳与整理是学习数学的关键环节,学生一定要把基础知识夯实,这样才能够在此基础上变换各种学习方法。老师要做的是要提高自己的教学效率,注重知识点的归纳和总结,让学生全面掌握知识点,在做题之中能灵活运用。比如,几何图形的证明与运算中有关于边与角的关系有许多琐碎的知识点;关于平行四边形类题型的解答步骤;辅助线的添加;三角形中心的应用;中位线定理的应用等等,这些知识点,稍不注意就容易忘掉或混淆,老师应帮助学生,以具体的题目为依托,整理出各类问题的知识要要点。  四、结语  初中数学教学在新课程标准改革的背景下变得更加富有创造性,更能吸引学生们认真学习,对于数学知识要点的着重把握还需各位一线老师的不懈钻研与分享。本文只是针对初中数学教学知识点的把握进行简要阐述,更深的学问还有待同仁们的共同努力。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-07-30
一堂课上的好不好,关键看教师是否正确地讲解了教材的基本内容,是否突破了教材的重点及解决了教材的难点,使学生真正地理解和掌握了教材的基本知识。教师在教学中能否抓住重点、突破难点,是做好教学工作的基本条件,也是教师能力的表现。
一、什么是教学重点和教学难点
所谓教学重点,“在教材内容的逻辑结构的特定层次中占相对重要的前提判断”,也就是“在整个知识体系或课题体系中处于重要地位和突出作用的内容”。如果某知识点是某单元内容的核心、是后继学习的基础或有广泛应用等,即可确定它是教学重点。也就是学生必须掌握的基本知识和基本技能,如意义、法则、性质、计算方法还包括数量关系、解决问题的策略等。例如,一年级100以内数的大小比较这节课的教学重点是比较两个数大小的方法;二年级平移和旋转的教学重点是初步感知平移和旋转现象;三年级中的平均数教学重点是理解平均数的含义;24时计时法的教学重点是知道24时计时法的含义,会用24时计时法表示时刻;四年级连减的简便计算教学重点是掌握连减的简便算法;五年级长方体的体积教学重点是运用长方体的体积公式解决实际问题;六年级用比例知识解决问题教学重点是会用比例知识解决问题。
教学难点,一般指对于大多数学生来说是理解和掌握起来感觉比较困难的关键性的知识点或容易出现混淆、错误的问题。例如,一年级实践活动的摆一摆,想一想的难点是通过观察找出用圆片摆出不同数的规律;二年级平移和旋转的教学难点是会在方格纸上画一个简单图形沿水平和竖直方向平移后的图形;三年级中的年月日的教学难点是记住每个月及平年闰年的天数,初步学会判断某一年是平年还是闰年。四年级李志兰和 刘永霞老师讲的两节课的难点是灵活选择计算方法解决实际问题;五年级长方体的体积教学难点是理解长方体的体积公式推导过程;六年级图形的放大与缩小教学难点是按一定的比例将图形放大和缩小。难点有时和重点是一致的。六年级上册的一个数乘以分数的意义的理解,既是教学中的一个难点,同时也是教学中的一个重点。
教学重点和教学难点也具有各自的特点。
教学重点来自于知识本身,是由于数学知识内在的逻辑结构而客观存在的,因而对每一个学生均是一致的。而教学难点却不同,它依赖于学生自身的理解和接受能力。实践证明不同层次的学生对于同一知识点的难点突破速度与水平是参差不齐的。
由于教学重点与难点二者形成的依据不同,所以有的教学内容既是教学重点又是教学难点,有的内容是教学重点但不一定是教学难点,有的内容是教学难点但不一定是教学重点。但是教学重点和难点都是由同一教学内容的教学目标所决定的。
二、研究教学重难点的意义何在
可以用这样一句话概括——落实教学重点是使学生掌握知识的前提,突破难点是教学成功的关键。而教师在教学过程中突破重难点的方法往往是使学生活跃思维、激发兴趣的催化剂。
三、如何在数学教学中突破重点和难点
这需要每一位数学教师在教学实践中不断地学习、总结、摸索。下面我就谈一谈对此问题的点滴体会和做法。
1.抓住知识间的衔接,运用迁移的方法突破重点和难点
我们先来关注数学的学科特点。小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。
由此可见,如果老师能够善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。
2.抓住知识间的联系,采用转化的策略突破重点和难点
转化——是指解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”一个新知识往往是旧知识的发展和结果,也就可以转化为旧知识来认识和理解。在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,使他们能用转化的观点去学习新知识、分析新问题才能使他们对知识的理解不断深刻,最终达到融汇贯通。
例如:三角形面积、梯形面积、圆面积公式的推倒。
3.强化感知参与,运用直观的方法突破教学重难点
直观——是指在教学过程中充分运用实物、模型、多媒体计算机等教学用具,通过实际操作、观察、思考的活动,帮助学生理解和掌握数学知识,促进学生的思维发展。直观教学是小学数学教学活动中的一种最常用的也是最为有独立自主的教学方法。
教学中突破教学重难点的方法还有很多,以上介绍的方法是针对一些知识点的教学单独使用的情况,这些方法当然也可以联合使用。总之,我们要做到在教学中切实提高课堂效率,就要深入研究教材和学生,努力实现“教无定法,贵在得法”。本回答被网友采纳
第2个回答  2021-06-28

相似回答