微分方程y'-3x=0的通解是

如题所述

特征方程r^3-8=0,(r-2)(r^2+2r+4)=0,r=2,-1±√3i因此通解为:y=C1e^(2x)+e^(-x)[C2sin(√3x)+C3cos(√3x)]。  微分方程:微分方程论是数学的重要分支之一。大致和微积分同时产生,并随实际需要而发展。含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用叫做“首次积分”的法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2016-12-27


啊哈

本回答被提问者采纳
相似回答