若cos(a+π/6)等于4/5,则sin(2a+π/12)的值为? 大家帮忙

如题所述

是不是少了一个条件: a为锐角?

如果是,解答如下:

a是锐角π/2<a+π/6<2π/3cos(a+π/6)=4/5,sin(a+π/6)=3/5sin(2a+π/3)=2sin(a+π/6)cos(a+π/6)=2*(4/5)*(3/5)=24/25cos(2a+π/3)=2cos�0�5(a+π/6)-1=2*(4/5)�0�5-1=7/25sin(2a+π/12)=sin[(2a+π/3)-π/4]=sin(2a+π/3)cos(π/4)-cos(2a+π/3)cos(π/4)=(24/25)*(√2/2)-(7/25)*(√2/2)=17√2/50
温馨提示:答案为网友推荐,仅供参考
相似回答