为什么Spark发展不如Hadoop

如题所述

Spark是一个基于RAM计算的开源码ComputerCluster运算系统,目的是更快速地进行数据分析。Spark早期的核心部分代码只有3万行。Spark提供了与HadoopMap/Reduce相似的分散式运算框架,但基于RAM和优化设计,因此在交换式数据分析和datamining的Workload中表现不错。

进入2014年以后,Spark开源码生态系统大幅增长,已成为大数据范畴最活跃的开源码项目之一。Spark之所以有如此多的关注,原因主要是因为Spark具有的高性能、高灵活性、与Hadoop生态系统完美融合等三方面的特点。

首先,Spark对分散的数据集进行抽样,创新地提出RDD(ResilientDistributedDataset)的概念,所有的统计分析任务被翻译成对RDD的基本操作组成的有向无环图(DAG)。RDD可以被驻留在RAM中,往后的任务可以直接读取RAM中的数据;同时分析DAG中任务之间的依赖性可以把相邻的任务合并,从而减少了大量不准确的结果输出,极大减少了HarddiskI/O,使复杂数据分析任务更高效。从这个推算,如果任务够复杂,Spark比Map/Reduce快一到两倍。

其次,Spark是一个灵活的运算框架,适合做批次处理、工作流、交互式分析、流量处理等不同类型的应用,因此Spark也可以成为一个用途广泛的运算引擎,并在未来取代Map/Reduce的地位。

最后,Spark可以与Hadoop生态系统的很多组件互相操作。Spark可以运行在新一代资源管理框架YARN上,它还可以读取已有并存放在Hadoop上的数据,这是个非常大的优势。

虽然Spark具有以上三大优点,但从目前Spark的发展和应用现状来看,Spark本身也存在很多缺陷,主要包括以下几个方面:

–稳定性方面,由于代码质量问题,Spark长时间运行会经常出错,在架构方面,由于大量数据被缓存在RAM中,Java回收垃圾缓慢的情况严重,导致Spark性能不稳定,在复杂场景中SQL的性能甚至不如现有的Map/Reduce。

–不能处理大数据,单独机器处理数据过大,或者由于数据出现问题导致中间结果超过RAM的大小时,常常出现RAM空间不足或无法得出结果。然而,Map/Reduce运算框架可以处理大数据,在这方面,Spark不如Map/Reduce运算框架有效。

–不能支持复杂的SQL统计;目前Spark支持的SQL语法完整程度还不能应用在复杂数据分析中。在可管理性方面,SparkYARN的结合不完善,这就为使用过程中埋下隐忧,容易出现各种难题。

虽然Spark活跃在Cloudera、MapR、Hortonworks等众多知名大数据公司,但是如果Spark本身的缺陷得不到及时处理,将会严重影响Spark的普及和发展。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-07-27
Spark已经取代Hadoop成为最活跃的开源大数据项目,但是,在选择大数据框架时,企业不能因此就厚此薄彼
近日,著名大数据专家Bernard Marr在一篇文章中分析了Spark和 Hadoop 的异同
Hadoop和Spark均是大数据框架,都提供了一些执行常见大数据任务的工具,但确切地说,它们所执行的任务并不相同,彼此也并不排斥
虽然在特定的情况下,Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统
而分布式存储是如今许多大数据项目的基础,它可以将 PB 级的数据集存储在几乎无限数量的普通计算机的硬盘上,并提供了良好的可扩展性,只需要随着数据集的增大增加硬盘
因此,Spark需要一个第三方的分布式存储,也正是因为这个原因,许多大数据项目都将Spark安装在Hadoop之上,这样,Spark的高级分析应用程序就可以使用存储在HDFS中的数据了
与Hadoop相比,Spark真正的优势在于速度,Spark的大部分操作都是在内存中,而Hadoop的MapReduce系统会在每次操作之后将所有数据写回到物理存储介质上,这是为了确保在出现问题时能够完全恢复,但Spark的弹性分布式数据存储也能实现这一点
另外,在高级数据处理(如实时流处理、机器学习)方面,Spark的功能要胜过Hadoop
在Bernard看来,这一点连同其速度优势是Spark越来越受欢迎的真正原因
实时处理意味着可以在数据捕获的瞬间将其提交给分析型应用程序,并立即获得反馈
在各种各样的大数据应用程序中,这种处理的用途越来越多,比如,零售商使用的推荐引擎、制造业中的工业机械性能监控
Spark平台的速度和流数据处理能力也非常适合机器学习算法,这类算法可以自我学习和改进,直到找到问题的理想解决方案
这种技术是最先进制造系统(如预测零件何时损坏)和无人驾驶汽车的核心
Spark有自己的机器学习库MLib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout
实际上,虽然Spark和Hadoop存在一些功能上的重叠,但它们都不是商业产品,并不存在真正的竞争关系,而通过为这类免费系统提供技术支持赢利的公司往往同时提供两种服务
例如,Cloudera 就既提供 Spark服务也提供 Hadoop服务,并会根据客户的需要提供最合适的建议
Bernard认为,虽然Spark发展迅速,但它尚处于起步阶段,安全和技术支持基础设施方还不发达,在他看来,Spark在开源社区活跃度的上升,表明企业用户正在寻找已存储数据的创新用法
相似回答