请列举出大学微积分需要用到的所有求导公式

如题所述

首先了解一下求导符号:

下列两种表示方法是最常见的,不过在这里也可以找到各种记号方法。

    莱布尼茨符号。如果有y 和x两个变量,这是最常用的。 dy/dx 就是y关于x的导数。如果想成Δy/Δx可能会更好办点, x 和 y 在这里有极其微小的差别。这个表达式也表示导数的极限定义: limh->0 (f(x+h)-f(x))/h。表达二阶导数的时候要写 d2y/dx2

    拉格朗日符号。f函数也被写成 f'(x)。这个念作"f撇x"。这个记号比上面那个简单,看起来也比较容易。要更高阶的导数,只要给f加 " ' ",因此二阶导数是f(x)。

再次,了解一下导数的定义:

理解一下导数的定义,和导数的用处。首先若要找出直线的斜率,只要选取两个点,把坐标代入(y2 - y1)/(x2 - x1)。但是这只适用于直线方程。要是要找曲线的斜率,要找两个点,代入 [f(x + dx) - f(x)]/dx。 Dx表示"delta x," 表示两个x坐标的差。注意这个公式和(y2- y1)/(x2 - x1)差不多,只不过形式不同。因为曲线上用这种方法会出现偏差,所以要用非直接的方法找出斜率。要找出 (x, f(x))的斜率, dx 要趋于0,于是这两个点会无限接近另一个点。但是分母也不能等于0,所以把两个点的值代入以后,要用因式分解等等方法把分母的dx消掉。消掉后,让dx 等于 0,得出等式。 这就是 (x, f(x))的斜率了。导数是用来找出任何曲线的斜率的一般公式。

最后,小提示:

    无论何时看到一个很复杂的求导问题,不要担心,只要试试用乘积法则、商法则把方程切成尽量小的小块,然后各项求导。

    多练习练习乘积法则、商法则、链式法则,以及特别要注意的隐微分,这些东西在微积分中是难点。

    要熟悉计算器使用。试试计算器不同的功能来解出导数。尤其要知道怎么用切线、导数函数来解题(如果有这功能的话)

    要把基本的三角函数求导原理和使用方法记住。

下面是导数公式:

一、基本的初等函数求导公式如下:

二、函数的和差积求导法则:

三、反函数求导法则:

基本积分表:

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜