潜油电泵对煤层气开采的适应性研究

如题所述

董振刚 邓辉 王惠先

(大庆油田力神泵业有限公司 黑龙江大庆 163311)

作者简介:董振刚,男,1967年6月生,1991年毕业于大庆石油学院,2002年获哈尔滨工程大学工程硕士学位,现就职于大庆油田力神泵业有限公司,主要从事电动潜油泵的设计开发和应用研究工作,高级工程师。E-mail:[email protected]

摘要 本文综合目前国内煤层气发展现状,分析了潜油电泵排水采气的技术特点和技术优势,提出提高潜油电泵对煤层气开采适应性的几项措施,介绍了潜油电泵在山西晋城煤层气开采的应用情况。基于国内技术现状,提出潜油电泵应用于煤层气开采的今后研究方向。

关键词 潜油电泵 煤层气

Study on Adaptability of ESP in CBM Exploitation

Dong Zhengang Deng Hui Wang Huixian

(Daqing Oilfield Powerlift Pump Industry Co.,Ltd,Daqing 163311)

Abstract:Based on current status of China's CBMdevelopment,the technical and features and advantages of ESP in dewatering and gas production were analyzed and some measures were provided to enhance the adaptability of ESP in CBMexploitation,at the same time,the applications of ESP in the case of Jincheng CBMdevelopment were introduced.Finally,the future improvement direction of ESP well applied in the CBMproduction practice was pointed out in the paper.

Keywords:Electrical submersible pump;CBM

引言

煤层气作为一种清洁能源,成为我国21世纪重要的能源来源。如何用更合理、更经济的手段开采煤层气,是同业人员普遍关注的问题。

潜油电泵技术是油田采油的成熟技术,历经半个世纪的发展过程,已成为石油行业重要的采油设备。特别是经过自身技术的不断完善和现代技术的应用,其适应性得到显著提高,包括适合稠油、高含气、高温、腐蚀、防砂等技术应运而生,为油田发展做出突出贡献。

潜油电泵应用于煤层气开采已有一定的发展历史,特别是美国已有近20年的发展过程。在煤层气开采上,由于使用目的不同,决定其工作状态和使用控制与油田采油存在很大的差别,单纯的技术嫁接并不能解决实际应用中存在的技术问题,例如适合煤层气使用的潜油电泵一般都是小排量离心泵,其本身对气的适应性是很差的,当大量的游离气进入离心泵后,会产生气蚀或气锁,造成泵不能正常工作,甚至损坏,只有有效解决气蚀或气锁问题,才能保证潜油电泵的可靠使用。

1 潜油电泵工作原理及在煤层气开采中的技术特点

潜油电泵是一种多级离心泵,它的工作原理与地面的普通离心泵一样。与抽油机、螺杆泵设备相比,具有排量大,通过变频可在较大排量范围内变化的特点。图1所示的是离心泵特性曲线。该曲线反映的是离心泵排量与扬程、泵效和轴功率之间的关系。

图1 离心泵特性曲线

在变频情况下,离心泵表现如下特性:

中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集

式中:Q1、Q2——不同频率下泵排量;f1、f2——频率。

中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集

式中:H1、H2——不同频率下泵扬程。

中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集

式中:N1、N2——不同频率下泵扬程。

η21 (4)

式中:η1、η2——不同频率下泵效。

利用离心泵的固有特性,可灵活控制排水采气过程。如在排水采气初期,需要将井中大量的井液排出,以利于产气,此时可根据排水量需要匹配合适的离心泵,利用离心泵排量大的特点进行快速抽排,并可以通过变频器变频调整产液量,此时离心泵主要工作在B区。当井液达到一定的动液面高度,套管形成一定的套压并达到生产要求,此时需要维持稳定的动态平衡,泵产液量大幅度下降,一般在0~10m3/d,该阶段属于煤层气的正常生产期。由于正常生产期的排水量很小,离心泵实际工作在特性曲线的A区,其扬程能力达到了最高。在煤层气的正常生产期,根据排产需要,可通过变频调整动液面高度,实现新的动态平衡。

虽然潜油电泵、抽油机和螺杆泵都可应用于排水采气,但是相比之下,潜油电泵具有抽油机和螺杆泵不可比拟的特点:

(1)通过变频可实现大排量抽采,见效迅速,而且不会对泵本身造成伤害;抽油机和螺杆泵提高转抽能力有限,如果设定过高,自身可靠性将受到很大影响。

(2)可实现自动保持动液面高度,防止抽空。即以设定的动液面高度为临界点,保证泵在该临界点处达到扬程能力极限。当动液面高度高于临界点时,泵会自动增大产液量,提高抽吸能力,降低动液面;当动液面趋近临界点时,泵的扬程能力达到最大,液面不会进一步下降。抽油泵和螺杆泵由于是容积式泵,本身不具备自动调节功能,只能通过人工调参来实现,一旦出现抽空,机组将迅速损坏。

(3)由于离心泵的自身特性,管理极为方便。可根据井况数据和泵特性曲线,通过理论计算就可直接调参,利用远程控制系统可实现直接控制,不需要中间入工测试等环节。

(4)由于离心泵靠潜油电机驱动,没有传动杆,因此可应用于斜井和水平井排水采气。抽油机和螺杆泵由于是有杆传动,在斜井和水平井方面具有很大的局限性。

2 提高潜油电泵对煤层气开采适应性的几项措施

煤层气使用的潜油电泵一般都是小排量离心泵,对游离气的适应性较差,因此解决离心泵对气的适应性问题是保证潜油电泵应用的关键。

(1)加深泵挂,将离心泵下入产气层以下,减小气对离心泵的影响,见图2所示。由于气液比重不同,从产气层出来的气液混合液,气向上走,进入套管环形空间;液向下走,进入离心泵,利用比重关系减少进入离心泵的气量。加深泵挂技术是油田采油的成熟技术,大量应用于含气油井采油,取得明显的应用效果。对于口袋井,加深泵挂不利于电机散热,如果套管径向空间足够,加导流罩可以解决电机散热问题。加深泵挂技术一般不适用于潜油电泵下入斜度较大的井段或水平井段。主要原因是没有足够的高度差保证气液混合液有效分离。

图2 机组加深泵挂示意图

(2)采用高效气液分离器。气液分离器石油行业叫油气分离器,它是针对含气油井而设计的装置,并安装在离心泵的入口端。生产过程中,气液混合液首先进入油气分离器,通过油气分离器的气、液分离,将分离出的气排放到套管环形空间,分离出的液输送到泵入口,从而减小游离气对离心泵的影响。资料表明,气液分离器可分离气液两相总体积35%的游离气,分离效率可达到90%以上。对于高含气井,由于气是主相,气液分离器并不能将气完全分离,而且气液分离器吸入口和排出口距离较近,一般小于1m,不一定能取得明显的效果,山西晋城潘河煤层气先导试验也验证了这一点。如果加导流罩,增加气液分离器吸入口和排出口距离,效果会明显。高效气液分离器一般不适用于潜油电泵下入斜度较大的井段或水平井段。主要原因是分离器的吸入口和排出口没有足够的高度差,容易形成游离气的自循环,见图3所示。

(3)采用组合泵的匹配方式。不同形式的离心泵对气的适应性是不同的,纯离心泵对气的适应性很差,容易形成气锁;混流式离心泵则对气的适应性较好,不易形成气锁。一般情况下,排量较小的泵(如250m3/d以下),叶轮是离心叶轮;排量较大的泵,叶轮是混流叶轮。采用组合泵的匹配方式就是将离心叶轮和混流叶轮进行组合匹配组装,利用混流叶轮对气适应性强的优势,保证泵整体不会产生气锁,保持连续工作。在山西晋城潘河煤层气先导试验区我们就利用了该技术,取得了明显的应用效果。

图3 游离气自循环过程

(4)采用专用气体处理器。气体处理器是近年来发展的新技术,安装在气液分离器和离心泵之间,也可替代气液分离器单独使用,其中安装的叶导轮属于抗气蚀能力强的轴流叶轮,当较大量气体进入气体处理器后,不会形成气蚀或气锁,并强力推动气液混合液继续向上运行,进入离心泵。虽然气液混合液进入离心泵后可能会形成气蚀或气锁,但是通过气体处理器的强力推动,会将气锁段向上推移直至推出离心泵,从而保证整机的正常工作。

3 潜油电泵在山西晋城煤层气开采的应用情况

从2005年10月起,在山西晋城潘河煤层气先导试验区相继投产了4台潜油电泵,具体应用情况见表1。

表1 山西晋城煤层气先导试验区潜油电泵使用情况

注:统计截止日期2006年6月26日。

从使用情况看,单纯使用高效气液分离器效果不如增加组合泵效果好。以PH46-02井为例,该井刚刚启机时机组运行一切良好,产液正常。运转一段时间或液面下降至240m左右便不产液。此时机组仍然运转,测量三项直流电阻和电压完全正常,电流和刚启动时的电流也基本相同。同时,液面开始回升、套压逐渐下降,在1小时以内套压便下降到0.1MPa。如果停机再重新启动,还会重复以上的动作。该症状表明,虽然采用了气液分离器,但是分离后剩余的气仍对泵造成气锁,而PH1-009 井和PH1-008 井由于采用了组合泵技术,没有出现气锁问题。

4 今后的研究方向

针对煤层气排水采气的特殊性,潜油电泵的应用还处于认识的初级阶段,提高潜油电泵应用的可靠性和经济性是未来发展的重要课题。

(1)对于煤层较浅,排采条件较好的气井,应以简化设计为主。以山西晋城煤层气为例,井深一般在400m左右,井温在20℃左右,搬用潜油电泵的全套技术设备,成本高,结构过于复杂。

a.电机功率较小,一般在15kW左右,而使用的保护器可满足60kW的使用要求,因此可以简化电机保护装置,甚至实现电机和保护装置的一体化设计,既满足使用,又降低成本;

b.降低机组的耐温等级,从材料上节约成本。由于油田井深一般都在1000m以上,地层温度高,设计的电机可满足120℃以上井温要求,材料成本相对较高。针对煤层气低温井,机组耐温等级降到60℃仍可满足使用要求;

c.研究适合的低成本潜水电缆。目前使用的潜油电缆,属于适合高温、高压和高绝缘性能的电缆,成本高,应用于浅层煤层气开采,经济性不好。

(2)对于煤层较深,井下条件较差的气井,应以提高机组性能设计为主。以辽河煤层气开采为例,井深1800m以上,井温高,正常生产液量在1~3m3/d,排采条件比油田采油还要恶劣,目前还没有很好的解决办法。

(3)开展潜油电泵斜井和水平井排水采气研究。由于加深泵挂技术和气液分离器技术并不能完全适应斜井和水平井排水采气,因此优化组合其他技术如潜油电动螺杆泵技术等是今后的研究方向。

(4)开展潜油电泵排水采气配套应用技术研究。不同的地质条件,对设备要求是不同的,如含砂、腐蚀程度等会对设备的使用寿命造成不同程度的影响,因此针对不同的地质条件和排采工艺,合理配套,才能实现效益的最大化。

参考文献

梅思杰、邵永实、刘军、师世刚主编.2004.潜油电泵技术,北京:石油工业出版杜,60,118

温馨提示:答案为网友推荐,仅供参考
相似回答