第1个回答 2018-11-08
死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死死地图下载死
第2个回答 2018-04-02
1+1=2就是数学当中的公理,在数学中是不需要证明的。
第3个回答 2020-12-09
百度知道1+1_2
1+1=2是为什么
有奖励写回答共52个回答
贲荣花叶戌
TA获得超过3.6万个赞
聊聊关注成为第34位粉丝
论哥德巴赫猜想的简单证明
一、证明方法
设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:
N=(N-Gn)+Gn
(1)
如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数。设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:
当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立。
二、双数筛法
设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2。如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi)
(2)
三、估计公式
由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1
(3)
式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘。
四、简单证明
当偶数N≥10000时,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1
(4)
公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法。
经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和。
最后结论:每一个大于4的偶数都可表为两个奇质数之和。
(一九八六年十二月二十四日)
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于
6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为
1+2。这是目前这个问题的最佳结果。
要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到。
给一个最简单的简述:
1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关.
第4个回答 2019-06-24
论哥德巴赫猜想的简单证明
一、证明方法
设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:
N=(N-Gn)+Gn
(1)
如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数。设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:
当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立。
二、双数筛法
设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2。如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi)
(2)
三、估计公式
由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1
(3)
式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘。
四、简单证明
当偶数N≥10000时,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1
(4)
公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法。
经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和。
最后结论:每一个大于4的偶数都可表为两个奇质数之和。
(一九八六年十二月二十四日)
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于
6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为
1+2。这是目前这个问题的最佳结果。
要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到。
给一个最简单的简述:
1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关.
第5个回答 2019-03-02
什=+据么角水不这。的1法一科角题得数是滴有加是1比这是在么个问多上一度,这一,个等问一看看所?水在如问在看你什还2也个度滴说吗看学题很样题不